• 제목/요약/키워드: Time Weighted Algorithm

검색결과 312건 처리시간 0.023초

시퀀스 빈발도와 가중치를 이용한 최적 이동 패턴 탐사 (Optimal Moving Pattern Mining using Frequency of Sequence and Weights)

  • 이연식;박성숙
    • 인터넷정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.79-93
    • /
    • 2009
  • 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 개발하기 위한 목적으로 시공간 상에서 발생하는 이동 객체의 다양한 패턴들 중 의미있는 유용한 패턴을 추출하기 위한 시공간 패턴 탐사가 필요하다. 이에 본 논문에서는 방대한 이동 객체의 이력 데이터로부터 패턴 탐사를 통해 실세계에 적용 가능한 위치 기반 서비스의 개발에 대한 응용으로, STOMP(F)[25]에서 정의한 최적의 이동 패턴을 탐사하는 문제들을 기반으로 시간 및 공간 제약을 갖는 패턴을 추출하기 위한 새로운 탐사 기법인 STOMP(FW)를 제안한다. 제안된 기법은 패턴 빈발도 만을 이용한 기존 연구(STOMP(F)[25])에 가중치(거리, 시간, 비용 등)를 복합적으로 이용하는 패턴 탐사 방법으로, 특정한 지점들 사이를 이동한 객체의 이동 패턴들 중 패턴 빈발도가 특정 임계치 이상이고 가중치가 가장 적게 소요되는 이동 패턴을 최적 경로로 결정하는 방법이다. 제안된 방법의 패턴 탐사는 경험적인 이동 이력을 사용함으로써 기존의 최적 경로 탐색 기법들($A^*$, Dijkstra 알고리즘)이나 빈발도 만을 이용한 방법들 보다 접근하는 노드 수가 상대적으로 적어 보다 빠르고 정확하게 최적 패턴을 탐색할 수 있음을 보인다.

  • PDF

Generation and Detection of Cranial Landmark

  • Heo, Suwoong;Kang, Jiwoo;Kim, Yong Oock;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • 제2권1호
    • /
    • pp.26-32
    • /
    • 2015
  • Purpose When a surgeon examines the morphology of skull of patient, locations of craniometric landmarks of 3D computed tomography(CT) volume are one of the most important information for surgical purpose. The locations of craniometric landmarks can be found manually by surgeon from the 3D rendered volume or 2D sagittal, axial, and coronal slices which are taken by CT. Since there are many landmarks on the skull, finding these manually is time-consuming, exhaustive, and occasionally inexact. These inefficiencies raise a demand for a automatic localization technique for craniometric landmark points. So in this paper, we propose a novel method through which we can automatically find these landmark points, which are useful for surgical purpose. Materials and Methods At first, we align the experimental data (CT volumes) using Frankfurt Horizontal Plane (FHP) and Mid Sagittal Plane(MSP) which are defined by 3 and 2 cranial landmark points each. The target landmark of our experiment is the anterior nasal spine. Prior to constructing a statistical cubic model which would be used for detecting the location of the landmark from a given CT volume, reference points for the anterior nasal spine were manually chosen by a surgeon from several CT volume sets. The statistical cubic model is constructed by calculating weighted intensity means of these CT sets around the reference points. By finding the location where similarity function (squared difference function) has the minimal value with this model, the location of the landmark can be found from any given CT volume. Results In this paper, we used 5 CT volumes to construct the statistical cubic model. The 20 CT volumes including the volumes, which were used to construct the model, were used for testing. The range of age of subjects is up to 2 years (24 months) old. The found points of each data are almost close to the reference point which were manually chosen by surgeon. Also it has been seen that the similarity function always has the global minimum at the detection point. Conclusion Through the experiment, we have seen the proposed method shows the outstanding performance in searching the landmark point. This algorithm would make surgeons efficiently work with morphological informations of skull. We also expect the potential of our algorithm for searching the anatomic landmarks not only cranial landmarks.

효율적 프랙탈 영상 압축 복호기의 설계 및 구현 (Design and Implementation of Efficient Decoder for Fractal-based Compressed Image)

  • 김춘호;김이섭
    • 전자공학회논문지C
    • /
    • 제36C권12호
    • /
    • pp.11-19
    • /
    • 1999
  • 최근에 등장한 프랙탈 영상 압축 알고리즘은 소프트웨어적인 측면에서는 많이 연구되고 있으나, 하드웨어 구현을 위한 연구는 드물다. 그러나 , 프랙탈 영상 압축 기법이 동영상 처리를 위해 사용될 경우 소프트웨어적으로는 실시간 처리의 어려움이 있어 고속의 전용 하드웨어가 필요하다. 그러나 , 아직 복호기의 구체적인 하드웨어의 설계 예는 드물다. 본 연구에서는 $256{\times}256$의 크기의 흑백 영상의 실시간 처리가 가능한 quadtree 방식의 프랙탈 영상 압축 복호기를 전용 하드웨어로 설계하였으며, 이를 위한 저전력 기법을 제안한다. 제안한 두 가지 방법 중 첫번째는 영상의 복원 후 발생하는 블록 현상을 제거하기 위한 post-processing 방법을 하드웨어 측면에서 최적화하는 것이다. 이 방식은 기존의 소프트웨어에서 사용하던 승산기가 필요한 가중 평균 방식보다 하드웨어를 적게 소모하여 비용을 줄이며, 속도는 69%정도의 향상이 있다. 두번째 방식은 데이터 패스 내부의 곱셈기를 입력 벡터의 통계적 특성을 이용하여 소비 전력이 적도록 설계하는 것이다. 이 방식으로 설계할 경우 8 bits 이하의 크기의 곱셈기에서 저전력에 유리하다고 알려진 어레이(array) 형태의 곱셈기에 비해 약 28%정도 소비 전력을 줄일 수 있었다. 위 두 가지 전력 절감 방식을 사용하여 동작 전압 3.3V, 1 poly 3 metal, $0.6{\mu}m$ CMOS 공정으로 복호기의 코어 부분을 칩으로 제작하였다.

  • PDF

Virus Throttling의 웜 탐지오판 감소 및 탐지시간 단축 (Reducing False Alarm and Shortening Worm Detection Time in Virus Throttling)

  • 심재홍;김장복;최경희;정기현
    • 정보처리학회논문지C
    • /
    • 제12C권6호
    • /
    • pp.847-854
    • /
    • 2005
  • 인터넷 웜(worm)의 전파속도는 매우 빠르기 때문에, 발생초기에 웜의 전파를 탐지하여 막지 못하면 큰 피해를 초래 할 수 있다. 새로운 세션에 대한 연결요청을 일정 비율이하로 제한함으로써 웜의 발생여부를 탐지하는 바이러스 쓰로틀링(virus throttling)[6, 7]은 대표적인 웜 조기탐지 기술 중의 하나이다. 대부분의 기존 기술은 지연 큐 관리에 있어서 동일한 수신 IP 주소들을 개별적으로 처리함으로써 웜 탐지의 오판 가능성을 증가시켰고, 지연 큐가 가득 찼을 때에만 웜이 발생했다고 판단하는 단순 판단 기법을 사용했다. 본 논문은 지연 큐에서 동일 수신 IP 주소들을 하나의 연결 리스트로 묶어 별도로 관리함으로써 동일 수신 IP들을 중복하여 지연 큐에 저장하지 않는 이차원 지연 규 관리방안을 제안한다. 개선된 바이러스 쓰로틀링은 지연 큐 길이 산정 시동일 수신 IP 주소들을 중복하여 계산하지 않기 때문에 웜 탐지 오류를 줄일 수 있다. 그리고 동일한 크기의 지연 큐를 가지고도 웜 탐지시간을 줄이고 웜 패킷 전송 수를 줄일 수 있는 가중치 평균 큐 길이 기반의 새로운 웜 탐지 알고리즘을 제안한다. 지연 큐 길이 산정 시 현재의 큐 길이 뿐 아니라 과거의 큐 길이를 반영하는 방법이 웜의 발생 가능성을 사전에 예측하여 기존 기법보다 빠르게 웜을 탐지할 수 있음을 실험을 통해 확인하였다.

변형확률모델을 활용한 소매업의 상권분석 방안에 관한 연구 (A Study on Trade Area Analysis with the Use of Modified Probability Model)

  • 진창범;윤명길
    • 유통과학연구
    • /
    • 제15권6호
    • /
    • pp.77-96
    • /
    • 2017
  • Purpose - This study aims to develop correspondence strategies to the environment change in domestic retail store types. Recently, new types of retails have emerged in retail industries. Therefore, trade area platform has developed focusing on the speed of data, no longer trade area from district border. Besides, 'trade area smart' brings about change in retail types with the development of giga internet. Thus, context shopping is changing the way of consumers' purchase pattern through data capture, technology capability, and algorithm development. For these reasons, the sales estimation model has been shown to be flawed using the notion of former scale and time, and it is necessary to construct a new model. Research design, data, and methodology - This study focuses on measuring retail change in large multi-shopping mall for the outlook for retail industry and competition for trade area with the theoretical background understanding of retail store types and overall domestic retail conditions. The competition among retail store types are strong, whereas the borders among them are fading. There is a greater need to analyze on a new model because sales expectation can be hard to get with business area competition. For comprehensive research, therefore, the research method based on the statistical analysis was excluded, and field survey and literature investigation method were used to identify problems and propose an alternative. In research material, research fidelity has improved with complementing research data related with retail specialists' as well as department stores. Results - This study analyzed trade area survival and its pattern through sales estimation and empirical studies on trade areas. The sales estimation, based on Huff model system, counts the number of households shopping absorption expectation from trade areas. Based on the results, this paper estimated sales scale, and then deducted modified probability model. Conclusions - In times of retail store chain destruction and off-line store reorganization, modified Huff model has problems in estimating sales. Transformation probability model, supplemented by the existing problems, was analyzed to be more effective in competitiveness business condition. This study offers a viable alternative to figure out related trade areas' sale estimation by reconstructing new-modified probability model. As a result, the future task is to enlarge the borders from IT infrastructure with data and evidence based business into DT infrastructure.

멀티모달 방법론과 텍스트 마이닝 기반의 뉴스 비디오 마이닝 (A News Video Mining based on Multi-modal Approach and Text Mining)

  • 이한성;임영희;유재학;오승근;박대희
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제37권3호
    • /
    • pp.127-136
    • /
    • 2010
  • 정보 통신기술이 발전함에 따라 멀티미디어 데이터를 포함하는 디지털 기록물의 양은 기하급수적으로 증가하고 있다. 특히 뉴스 비디오는 시대상을 반영하는 풍부한 정보를 내포하고 있으므로, 이를 효과적으로 관리하고 분석하기 위한 뉴스 비디오 데이터베이스 및 뉴스 비디오 마이닝은 광범위하게 연구되어왔다. 그러나 현재까지의 뉴스 비디오 관련 연구들은 뉴스 기사에 대한 브라우징, 검색, 요약에 치중되어 있으며, 뉴스 비디오에 내재되어 있는 풍부한 잠재적 지식을 탐사하는 고수준의 의미 분석 단계에는 이르지 못하고 있다. 본 논문에서는 뉴스 비디오 클립과 스크립트를 동시에 이용하는, 멀티모달 방법론과 텍스트 마이닝 기반의 뉴스 비디오 마이닝 시스템을 제안한다. 제안된 시스템은 텍스트 마이닝의 군집분석을 통해 뉴스 기사들을 자동 분류하고, 분류 결과에 대해 기간별 군집 추이그래프, 군집성장도 분석 및 네트워크 분석을 수행함으로써, 뉴스 비디오의 기사별 주제와 관련한 다각적 분석을 수행한다. 제안된 시스템의 타당성 검증을 위하여 "2007년 제2차 남북 정상회담" 관련 뉴스 비디오를 대상으로 뉴스 비디오 분석을 수행하였다.

Research on rapid source term estimation in nuclear accident emergency decision for pressurized water reactor based on Bayesian network

  • Wu, Guohua;Tong, Jiejuan;Zhang, Liguo;Yuan, Diping;Xiao, Yiqing
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2534-2546
    • /
    • 2021
  • Nuclear emergency preparedness and response is an essential part to ensure the safety of nuclear power plant (NPP). Key support technologies of nuclear emergency decision-making usually consist of accident diagnosis, source term estimation, accident consequence assessment, and protective action recommendation. Source term estimation is almost the most difficult part among them. For example, bad communication, incomplete information, as well as complicated accident scenario make it hard to determine the reactor status and estimate the source term timely in the Fukushima accident. Subsequently, it leads to the hard decision on how to take appropriate emergency response actions. Hence, this paper aims to develop a method for rapid source term estimation to support nuclear emergency decision making in pressurized water reactor NPP. The method aims to make our knowledge on NPP provide better support nuclear emergency. Firstly, this paper studies how to build a Bayesian network model for the NPP based on professional knowledge and engineering knowledge. This paper presents a method transforming the PRA model (event trees and fault trees) into a corresponding Bayesian network model. To solve the problem that some physical phenomena which are modeled as pivotal events in level 2 PRA, cannot find sensors associated directly with their occurrence, a weighted assignment approach based on expert assessment is proposed in this paper. Secondly, the monitoring data of NPP are provided to the Bayesian network model, the real-time status of pivotal events and initiating events can be determined based on the junction tree algorithm. Thirdly, since PRA knowledge can link the accident sequences to the possible release categories, the proposed method is capable to find the most likely release category for the candidate accidents scenarios, namely the source term. The probabilities of possible accident sequences and the source term are calculated. Finally, the prototype software is checked against several sets of accident scenario data which are generated by the simulator of AP1000-NPP, including large loss of coolant accident, loss of main feedwater, main steam line break, and steam generator tube rupture. The results show that the proposed method for rapid source term estimation under nuclear emergency decision making is promising.

최적 염소 소독 모형의 개발 및 파라미터 연구 (Development of Optimal Chlorination Model and Parameter Studies)

  • 김준현;안수영;박민우
    • 환경영향평가
    • /
    • 제29권6호
    • /
    • pp.403-413
    • /
    • 2020
  • 최적의 염소 소독 전략을 구축하기 위해 8개의 연립 준선형 편미분방정식으로 구성된 수학적 모형이 제안되었다. 다차원 수치 프로그램을 개발하기 위해 상류 가중 유한요소법을 사용하였다. 프로그램은 세 가지 유형의 반응기에서 측정된 농도에 대해 검증되었다. 16개의 실험 결과에 대해 경계 조건 및 반응 속도를 보정하여 측정된 값을 재생시켰다. 모델링 결과로부터 8개의 반응 속도계수가 추정되었다. 반응 속도계수는 pH 및 온도로 표현되었다. 반응 속도계수를 추정하기 위해 수치 오차의 제곱의 합을 최소화하는 자동 최적 알고리즘의 프로그램을 개발하고 모형에 결합하였다. 최종 사용지에서 염소 및 오염물의 농도를 최소화하기 위해서는 정수장의 염소소독공정으로부터 최종 사용지까지의 수질 변화를 모형에 의해 예측하고 이를 기반으로 유입수 수질에 따라 염소소독공정을 운영하는 실시간 예측 제어 시스템이 필요하다. 본 모형을 이용하여 정수장에 이러한 시스템을 구축할 수 있을 것이다.

고차원 관측자료에서의 Q-학습 모형에 대한 이중강건성 연구 (Doubly-robust Q-estimation in observational studies with high-dimensional covariates)

  • 이효빈;김예지;조형준;최상범
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.309-327
    • /
    • 2021
  • 동적 치료 요법(dynamic treatment regimes; DTRs)은 다단계 무작위 시험에서 개인에 맞는 치료를 제공하도록 설계된 의사결정 규칙이다. 모든 개인이 동일한 유형의 치료를 처방받는 고전적인 방법과 달리 DTR은 시간이 지남에 따라 변할 수 있는 개별 특성을 고려한 환자 맞춤형 치료를 제공한다. 최적의 치료 규칙을 파악하기 위한 회귀 기반 알고리즘 중 하나인 Q-학습 방법은 쉽게 구현될 수 있기 때문에 더욱 인기를 끌고 있다. 그러나 Q-학습 알고리즘의 성능은 Q-함수를 제대로 설정했는지의 여부에 크게 의존한다. 본 논문에서는 고차원 데이터가 수집되는 DTRs 문제에 대한 다양한 이중강건 Q-학습 알고리즘을 연구하고 가중 최소제곱 추정 방법을 제안한다. 이중강건성(double-robustness)은 반응변수에 대한 모형 혹은 처리변수에 대한 모형 둘 중 하나만 제대로 설정되어도 불편추정량을 얻을 수 있음을 의미한다. 다양한 모의실험 연구를 통해 제안된 방법이 여러 시나리오 하에서도 잘 작동함을 확인하였으며 실제 데이터 예제를 통해 방법론에 대한 예시를 제시하였다.

딥러닝 기반 국내 지반의 지지층 깊이 예측 (Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data)

  • 장영은;정재호;한진태;유용균
    • 한국지반공학회논문집
    • /
    • 제38권3호
    • /
    • pp.35-42
    • /
    • 2022
  • 지반조사방법 중 표준관입시험 결과인 N치를 통해 알 수 있는 지반 지지층의 깊이는 각종 지반 구조물의 설계를 위한 기본적인 지반 정보를 제공하는 중요한 지표이다. 이러한 지반조사 결과는 시간과 비용 측면을 고려해 간헐적으로 수행될 수밖에 없으며, 그 결과는 현장 지반의 대표성을 갖게 된다. 그러나 지반 내에는 다양한 지층 변동성 및 불확실성이 존재하므로 간헐적인 현장조사를 통해 지반의 특성을 모두 파악하는 것은 어렵다. 따라서 시추공 정보로부터 미계측 지점을 예측하기 위한 방법들이 제시되어 왔으며, 대표적인 방법으로는 공간보간기법인 크리깅(Krigging), 역거리가중법(IDW)등이 있다. 최근에는 보간기법의 정확성을 높이기 위해 지반분야와 딥러닝 기술을 접목한 연구들이 수행되고 있다. 본 연구에서는 약 2만 2천공의 지반조사 결과를 바탕으로 딥러닝과 공간보간기법으로 지반 지지층 깊이 예측을 위한 비교 연구를 수행하였다. 이를 위해 딥러닝 알고리즘인 완전연결 네트워크와 포인트넷 방법, 공간보간기법으로는 IDW를 사용하였다. 각 분석 모델의 지지층 예측 결과 중 오차의 평균은 IDW가 3.01m 였으며, 완전연결 네트워크 및 포인트넷이 각 3.22m와 2.46m 였다. 결과의 표준편차는 IDW가 3.99였으며, 완전연결네트워크와 포인트넷이 3.95와 3.54로 나타났다. 연구 결과 3차원 정보에 특화된 포인트넷 구조를 적용한 네트워크가 IDW 및 완전연결 네트워크에 비해 개선된 결과를 나타냈다.