• 제목/요약/키워드: Time To Impact

검색결과 5,395건 처리시간 0.023초

Guidance Synthesis to Control Impact Angle and Time

  • Shin, Hyo-Sang;Lee, Jin-Ik;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.129-136
    • /
    • 2006
  • A new guidance synthesis for anti-ship missiles to control impact angle and impact time is proposed in this paper. The flight vehicle is assumed as a 1st order lag system to consider more practical system. The proposed guidance synthesis enhances the survivability of anti-ship missiles because multiple anti-ship missiles with the proposed synthesis can hit the target simultaneously. The control input to satisfy constraints of zero miss distance and impact angle, and the feedforward bias control input to control impact time constitute the guidance law. The former is from trajectory shaping guidance, the latter is from neural network. And particle swarm optimization method is introduced to furnish reference input and output for learning in neural network. The performance of the proposed synthesis in the accuracy of impact time and angle is validated by numerical examples.

GUIDANCE LAW FOR IMPACT TIME AND ANGLE CONTROL WITH CONTROL COMMAND RESHAPING

  • LEE, JIN-IK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권3호
    • /
    • pp.271-287
    • /
    • 2015
  • In this article, a more generalized form of the impact time and angle control guidance law is proposed based on the linear quadratic optimal control methodology. For the purpose on controlling an additional constraint such as the impact time, we introduce an additional state variable that is defined to be the jerk (acceleration rate). Additionally, in order to provide an additional degree of freedom in choosing the guidance gains, the performance index that minimizes the control energy weighted by an arbitrary order of time-to-go is considered in this work. First, the generalized form of the impact angle control guidance law with an additional term which is used for the impact time control is derived. And then, we also determine the additional term in order to achieve the desired impact time. Through numbers of numerical simulations, we investigate the superiority of the proposed guidance law compared to previous guidance laws. In addition, a salvo attack scenario with multiple missile systems is also demonstrated.

A phase synthesis time reversal impact imaging method for on-line composite structure monitoring

  • Qiu, Lei;Yuan, Shenfang
    • Smart Structures and Systems
    • /
    • 제8권3호
    • /
    • pp.303-320
    • /
    • 2011
  • Comparing to active damage monitoring, impact localization on composite by using time reversal focusing method has several difficulties. First, the transfer function of the actuator-sensor path is difficult to be obtained because of the limitation that no impact experiment is permitted to perform on the real structure and the difficulty to model it because the performance of real aircraft composite is much more complicated comparing to metal structure. Second, the position of impact is unknown and can not be controlled as the excitation signal used in the active monitoring. This makes it not applicable to compare the difference between the excitation and the focused signal. Another difficulty is that impact signal is frequency broadband, giving rise to the difficulty to process virtual synthesis because of the highly dispersion nature of frequency broadband Lamb wave in plate-like structure. Aiming at developing a practical method for on-line localization of impact on aircraft composite structure which can take advantage of time reversal focusing and does not rely on the transfer function, a PZT sensor array based phase synthesis time reversal impact imaging method is proposed. The complex Shannon wavelet transform is presented to extract the frequency narrow-band signals from the impact responded signals of PZT sensors. A phase synthesis process of the frequency narrow-band signals is implemented to search the time reversal focusing position on the structure which represents the impact position. Evaluation experiments on a carbon fiber composite structure show that the proposed method realizes the impact imaging and localization with an error less than 1.5 cm. Discussion of the influence of velocity errors and measurement noise is also given in detail.

Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method

  • Han, Pengfei;Liu, Jingbo;Fei, Bigang
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.326-342
    • /
    • 2022
  • Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method are performed in this paper. The decoupling method is applying impact force time-history curves on impact area of the shield building to study impact damage effects on structure. The coupling method is using a model including aircraft and shield building to perform simulation of the entire impact process. Impact force time-history curves of the fuselage, wing and engine and their total impact force time-history curve are obtained by the entire aircraft normally impacting the rigid wall. Taking aircraft structure and impact progress into account some loading areas are determined to perform some comparative analyses between decoupling method and coupling method, the calculation results including displacement, plastic strain of concrete and stress of steel plate in impact area are given. If the loading area is determined unreasonably, it will be difficult to assess impact damage of impact area even though the accurate impact force of each part of aircraft obtained already. The coupling method presented at last in this paper can more reasonably evaluate the dynamic response of the shield building than the decoupling methods used in the current nuclear engineering design.

시변 이득을 이용한 비행시간 및 충돌각 제어 유도법칙 (Guidance Law to Control Impact-Time-And-Angle Using Time-Varying Gains)

  • 이진익;전인수
    • 한국항공우주학회지
    • /
    • 제35권7호
    • /
    • pp.633-639
    • /
    • 2007
  • 본 논문에서는 비행시간과 충돌각을 동시에 제어하기 위한 새로운 호밍 유도법칙을 제안한다. 제안한 유도법칙은 기존의 충돌각 제어 유도법칙인 BPN을 근간으로 비행시간 제어를 위한 제어명령을 부가한다. 부가되는 제어명령은 요구되는 비행시간과 추정된 잔여 비행시간과의 오차로 구성되는 시변이득을 이용하여 산출한다. 따라서 비행시간 오차가 없는 경우 제안한 유도법칙은 BPN으로 수렴되어 안정된 호밍 루프를 구성하게 된다. 시뮬레이션을 통해 제안한 유도법칙의 성능을 확인한다.

An Automatic Diagnosis Method for Impact Location Estimation

  • Kim, Jung-Soo;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.295-300
    • /
    • 1998
  • In this paper, a real time diagnostic algorithm fur estimating the impact location by loose parts is proposed. It is composed of two modules such as the alarm discrimination module (ADM) and the impact-location estimation module(IEM). ADM decides whether the detected signal that triggers the alarm is the impact signal by loose parts or the noise signal. When the decision from ADM is concluded as the impact signal, the beginning time of burst-type signal, which the impact signal has usually such a form in time domain, provides the necessary data fur IEM. IEM by use of the arrival time method estimates the impact location of loose parts. The overall results of the estimated impact location are displayed on a computer monitor by the graphical mode and numerical data composed of the impact point, and thereby a plant operator can recognize easily the status of the impact event. This algorithm can perform the diagnosis process automatically and hence the operator's burden and the possible operator's error due to lack of expert knowledge of impact signals can be reduced remarkably. In order to validate the application of this method, the test experiment with a mock-up (flat board and reactor) system is performed. The experimental results show the efficiency of this algorithm even under high level noise and potential application to Loose Part Monitoring System (LPMS) for improving diagnosis capability in nuclear power plants.

  • PDF

Impact location on a stiffened composite panel using improved linear array

  • Zhong, Yongteng;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • 제24권2호
    • /
    • pp.173-182
    • /
    • 2019
  • Due to the degradation of beamforming properties at angles close to $0^{\circ}$ to $180^{\circ}$, linear array does not have a complete $180^{\circ}$ inspection range but a smaller one. This paper develops a improved sensor array with two additional sensors above and below the linear sensor array, and presents time difference and two dimensional multiple signal classification (2D-MUSIC) based impact localization for omni-directional localization on composite structures. Firstly, the arrival times of impact signal observed by two additional sensors are determined using the wavelet transform and compared, and the direction range of impact source can be decided in general, $0^{\circ}$ to $180^{\circ}$ or $180^{\circ}$ to $360^{\circ}$. And then, 2D-MUSIC based spatial spectrum formula using uniform linear array is applied for locate accurate position of impact source. When the arrival time of impact signal observed by two additional sensors is equal, the direction of impact source can be located at $0^{\circ}$ or $180^{\circ}$ by comparing the first and last sensor of linear array. And then the distance is estimated by time difference algorithm. To verify the proposed approach, it is applied to a quasi-isotropic epoxy laminate plate and a stiffened composite panel. The results are in good agreement with the actual impact occurring position.

충격 시험의 출력 데이터에 기초한 유사잔향 시간을 이용한 도자기의 결함 탐지법 (Fault Detection Method for Ceramic Cup by Pseudo Reverberation Time Based on Output Data by Impact Test)

  • 박석태
    • 한국음향학회지
    • /
    • 제25권6호
    • /
    • pp.257-268
    • /
    • 2006
  • 도자기 컵의 결함여부를 판정하는 간편한 방법으로 실내에서 충격 시험으로 추정한 유사잔향시간을 사용하는 방법을 제시하였다. 정상적인 도자기 컵과 미세한 균열이 있는 컵에 대하여 충격 시험을 하여 발생하는 충격음에서 구한 슈레더 곡선에서 잔향 시간을 추정하였다. 충격 가진 막대의 종류와 가진 위치, 경계 조건에 따라 잔향 시간을 추정하였고 추정된 잔향 시간으로부터 도자기 컵의 결함 유무를 효과적으로 파악할 수 있는지를 기술하였다

Mechanical behavior of FRP confined steel tubular columns under impact

  • Liu, Qiangqiang;Zhou, Ding;Wang, Jun;Liu, Weiqing
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.691-702
    • /
    • 2018
  • This paper presents experimental and analytical results of fiber reinforced polymer (FRP) confined steel tubular columns under transverse impact loads. Influences of applied impact energy, thickness of FRP jacket and impact position were discussed in detail, and then the impact responses of FRP confined steel tubes were compared with bare steel tubes. The test results revealed that the FRP jacket contributes to prevent outward buckling deformation of steel at the clamped end and inward buckling of steel at the impact position. For the given applied impact energy, specimens wrapped with one layer and three layers of FRP have the lower peak impact loads than those of the bare steel tubes, whereas specimens wrapped with five layers of FRP exhibit the higher peak impact loads. All the FRP confined steel tubular specimens displayed a longer duration time than the bare steel tubes under the same magnitude of impact energy, and the specimen wrapped with one layer of FRP had the longest duration time. In addition, increasing the applied impact energy leads to the increase of peak impact load and duration time, whereas increasing the distance of impact position from the clamped end results in the decrease of peak impact load and the increase of duration time. The dynamic analysis software Abaqus Explicit was used to simulate the mechanical behavior of FRP confined steel tubular columns, and the numerical results agreed well with the test data. Analytical solution for lateral displacement of an equivalent cantilever beam model subjected to impact load was derived out. Comparison of analytical and experimental results shows that the maximum displacement can be precisely predicted by the present theoretical model.

금속파편 감시 시스템에 대한 시간-주파수 해석 적용 연구 (Application of Time-Frequency Analysis Methods to Loose Part Impact Signal)

  • 박진호;이정한;김봉수;박기용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.361-364
    • /
    • 2003
  • The safe operation and reliable maintenance of nuclear power plants is one of the most fundamental and important tasks. It is known that a loose part such as a disengaged and drifting metal inside of reactor coolant systems might lead to a serious damage because of their impact on the components of the coolant system. In order to estimate the impact position of a loose par, three accelerometers attached to the wall of the coolant system have been used. These accelerometers measure the vibration of the coolant system induced by loose part impact. In the conventional analysis system, the low pass filtered version of the vibration data was used for the estimation of the position of a loose part. It is often difficult to identify the initial point of the impact signal by using just a low passed time signal because the impact wave is dispersed during propagation into the sensor. In this paper, the impact signal is analysed by use of various time frequency methods including the short time Fourier transform(STFT), the wavelet transform, and the Wigner-Vill distribution for finding a convenient way to identify the starting point of a impact signal and their advantages and limits are discussed.

  • PDF