• Title/Summary/Keyword: Time Spectral method

Search Result 603, Processing Time 0.027 seconds

Estimation of Directional Frequency Response Functions for Asymmetric Rotor with Anisotropic Stators (비대칭성과 비등방성이 공존하는 회전체에서의 방향성 주파수 응답 함수 추정)

  • 서윤호;강성우;서정환;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.681-686
    • /
    • 2004
  • Identification of asymmetry and anisotropy of rotor system is important for diagnosis of rotating machinery. Directional frequency response functions (dFRFs) are known to be powerful tool in effectively detecting the presence of asymmetry or anisotropy. In this paper, an estimation method of dFRFs for rotors is newly developed, when both asymmetry and anisotropy are present. The method transforms the finite degrees-of-freedom time-varying linear differential equation of motion to an infinite degree-of-freedom time-invariant linear one, employing the modulated coordinates. The validity of the method is demonstrated by numerical simulation with a simple rotor model.

  • PDF

Hyperspectral Image Analysis (하이퍼스펙트럴 영상 분석)

  • 김한열;김인택
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.11
    • /
    • pp.634-643
    • /
    • 2003
  • This paper presents a method for detecting skin tumors on chicken carcasses using hyperspectral images. It utilizes both fluorescence and reflectance image information in hyperspectral images. A detection system that is built on this concept can increase detection rate and reduce processing time, because the procedure for detection can be simplified. Chicken carcasses are examined first using band ratio FCM information of fluorescence image and it results in candidate regions for skin tumor. Next classifier selects the real tumor spots using PCA components information of reflectance image from the candidate regions. For the real world application, real-time processing is a key issue in implementation and the proposed method can accommodate the requirement by using a limited number of features to maintain the low computational complexity. Nevertheless, it shows favorable results and, in addition, uncovers meaningful spectral bands for detecting tumors using hyperspectral image. The method and findings can be employed in implementing customized chicken tumor detection systems.

A rapid screening method for selection and modification of ground motions for time history analysis

  • Behnamfar, Farhad;Velni, Mehdi Talebi
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.29-39
    • /
    • 2019
  • A three-step screening process is presented in this article for selection of consistent earthquake records in which number of suitable ground motions is quickly screened and reduced to a handful number. Records that remain at the end of this screening process considerably reduce the dispersion of structural responses. Then, an effective method is presented for spectral matching and modification of the selected records. Dispersion of structural responses is explored using different statistical measures for each scaling procedure. It is shown that the Uniform Design Method, presented in this study for scaling of earthquake records, results in most cases in the least dispersion measure.

Cloud Detection Using HIMAWARI-8/AHI Based Reflectance Spectral Library Over Ocean (Himawari-8/AHI 기반 반사도 분광 라이브러리를 이용한 해양 구름 탐지)

  • Kwon, Chaeyoung;Seo, Minji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.599-605
    • /
    • 2017
  • Accurate cloud discrimination in satellite images strongly affects accuracy of remotely sensed parameter produced using it. Especially, cloud contaminated pixel over ocean is one of the major error factors such as Sea Surface Temperature (SST), ocean color, and chlorophyll-a retrievals,so accurate cloud detection is essential process and it can lead to understand ocean circulation. However, static threshold method using real-time algorithm such as Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Himawari Imager (AHI) can't fully explained reflectance variability over ocean as a function of relative positions between the sun - sea surface - satellite. In this paper, we assembled a reflectance spectral library as a function of Solar Zenith Angle (SZA) and Viewing Zenith Angle (VZA) from ocean surface reflectance with clear sky condition of Advanced Himawari Imager (AHI) identified by NOAA's cloud products and spectral library is used for applying the Dynamic Time Warping (DTW) to detect cloud pixels. We compared qualitatively between AHI cloud property and our results and it showed that AHI cloud property had general tendency toward overestimation and wrongly detected clear as unknown at high SZA. We validated by visual inspection with coincident imagery and it is generally appropriate.

Fast Convolution Method Using Real-time Masking Effects in Sound Reverberator (잔향 생성기에서 실시간 마스킹 효과를 이용한 고속 컨벌루션 방법)

  • Shin, Min-Cheol;Wang, Se-Myung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.231-237
    • /
    • 2008
  • With the advent of sound field simulator, many sound fields have been reproduced by obtaining the impulse responses of specific acoustic spaces like famous concert hall, opera house. This sound field reproduction has been done by the linear convolution operation between the sound input signal and the impulse response of certain acoustic space. However, the conventional finite impulse response based linear convolution operation always makes real-time implementation of sound field generator impossible due to the large amount of computational burden. This paper introduces the fast convolution method using perceptual redundancy in the processed signals, input audio signal and room impulse response. Temporal and spectral real-time masking blocks are implemented in the proposed convolution structure. It reduces the computational burden of convolution methods for real-time implementation of a sound field generator. The conventional convolutions are compared with the proposed one in views of computational burden and sound quality. In the proposed method, a considerable reduction in the computational burden was realized with acceptable changes in sound quality.

Fault Diagnosis Using Wavelet Transform Method for Random Signals (불규칙 신호의 웨이블렛 기법을 이용한 결함 진단)

  • Kim Woo-Taek;Sim Hyoun-Jin;Abu Aminudin bin;Lee Hae-Jin;Lee Jung-Yoon;Oh Jae-Eung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.80-89
    • /
    • 2005
  • In this paper, time-frequency analysis using wavelet packet transform and advanced-MDSA (Multiple Dimensional Spectral Analysis) which based on wavelet packet transform is applied fur fault source identification and diagnosis of early detection of fault non-stationary sound/vibration signals. This method is analyzing the signal in the plane of instantaneous time and instantaneous frequency. The results of ordinary coherence function, which obtained by wavelet packet analysis, showed the possibility of early fault detection by analysis at the instantaneous time. So, by checking the coherence function trend, it is possible to detect which signal contains the major fault signal and to know how much the system is damaged. Finally, It is impossible to monitor the system is damaged or undamaged by using conventional method, because crest factor is almost constant under the range of magnitude of fault signal as its approach to normal signal. However instantaneous coherence function showed that a little change of fault signal is possible to monitor the system condition. And it is possible to predict the maintenance time by condition based maintenance for any stationary or non-stationary signals.

Time domain buffeting analysis of long suspension bridges under skew winds

  • Liu, G.;Xu, Y.L.;Zhu, L.D.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.421-447
    • /
    • 2004
  • This paper presents a time domain approach for predicting buffeting response of long suspension bridges under skew winds. The buffeting forces on an oblique strip of the bridge deck in the mean wind direction are derived in terms of aerodynamic coefficients measured under skew winds and equivalent fluctuating wind velocities with aerodynamic impulse functions included. The time histories of equivalent fluctuating wind velocities and then buffeting forces along the bridge deck are simulated using the spectral representation method based on the Gaussian distribution assumption. The self-excited forces on an oblique strip of the bridge deck are represented by the convolution integrals involving aerodynamic impulse functions and structural motions. The aerodynamic impulse functions of self-excited forces are derived from experimentally measured flutter derivatives under skew winds using rational function approximations. The governing equation of motion of a long suspension bridge under skew winds is established using the finite element method and solved using the Newmark numerical method. The proposed time domain approach is finally applied to the Tsing Ma suspension bridge in Hong Kong. The computed buffeting responses of the bridge under skew winds during Typhoon Sam are compared with those obtained from the frequency domain approach and the field measurement. The comparisons are found satisfactory for the bridge response in the main span.

Power Spectral Density of Antipodal Ultra Wideband Signal (Antipodal 초광대역(UWB) 신호의 전력 스펙트럼 밀도 분석)

  • Kim, Jong Han;Lee, Jung Suk;Kim, Yoo Chang;Kim, Won Hoo;Kim, Jung Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.1
    • /
    • pp.54-61
    • /
    • 2001
  • In conventional Ultra Wide Band(UWB) system, it uses Pulse Positioning Modulation Method to modulate data signal. In this paper, however, we derive power spectral density characteristic of time hopped antipodal signal using stochastic process. UWB signal employes Gaussian monopulse and Rayleigh monopulse which pulse width is 0.5 nsec and interval is 5 nsec. But comb line which produces unintentionally could be evidently reduced by the time hopped code, so this code be used to channelize for multiple access and minimize to different communication system.

  • PDF

Numerical Study on the Fluid Flow and Heat Transfer Past a Cylinder with a Periodic Array of Circular Fins (원형 핀이 부착된 실린더 주위의 유동 및 열전달에 관한 수치적 연구)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan;Lee, Dong-Hyuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.285-293
    • /
    • 2006
  • Three-dimensional and time-dependent solution for the fluid flow and heat transfer past a circular cylinder with fins is obtained using accurate and efficient spectral methods. A Fourier expansion with a corresponding uniform grid is used along the circumferential direction. A spectral multi-domain method with a corresponding Chebyshev collocation is used along r-z plane to handle fins attached to the surface of a circular cylinder. At the Reynolds number of 300 based on a cylinder diameter, results with fins are compared with those without fins in order to see the effects of the presence of fins on three-dimensional and unsteady fluid flow and heat transfer past a bluff body. The detail structures of fluid flow and temperature field are obtained as a function of time to investigate how the presence of fins changes heat transfer mechanism related to the vortical structure in the wake region.

Performance Evaluation of Cochlear Implants Speech Processing Strategy Using Neural Spike Train Decoding (Neural Spike Train Decoding에 기반한 인공와우 어음처리방식 성능평가)

  • Kim, Doo-Hee;Kim, Jin-Ho;Kim, Kyung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.271-279
    • /
    • 2007
  • We suggest a novel method for the evaluation of cochlear implant (CI) speech processing strategy based on neural spike train decoding. From formant trajectories of input speech and auditory nerve responses responding to the electrical pulse trains generated from a specific CI speech processing strategy, optimal linear decoding filter was obtained, and used to estimate formant trajectory of incoming speech. Performance of a specific strategy is evaluated by comparing true and estimated formant trajectories. We compared a newly-developed strategy rooted from a closer mimicking of auditory periphery using nonlinear time-varying filter, with a conventional linear-filter-based strategy. It was shown that the formant trajectories could be estimated more exactly in the case of the nonlinear time-varying strategy. The superiority was more prominent when background noise level is high, and the spectral characteristic of the background noise was close to that of speech signals. This confirms the superiority observed from other evaluation methods, such as acoustic simulation and spectral analysis.