• 제목/요약/키워드: Time Series analysis(ARIMA

검색결과 144건 처리시간 0.027초

계수형 시계열 모형을 위한 자동화 차수 선택 알고리즘 (Automatic order selection procedure for count time series models)

  • 지윤미;성병찬
    • 응용통계연구
    • /
    • 제33권2호
    • /
    • pp.147-160
    • /
    • 2020
  • 본 논문은 시계열 일반화 선형 모형의 하나인 계수형 시계열 모형에서 중요한 역할을 하는 과거 관측값과 조건부 평균값의 차수를 자동으로 결정하는 알고리즘을 연구한다. 본 알고리즘은 ARIMA 모형의 차수를 기반으로 시계열 일반화 선형 모형의 차수 후보군을 만들고, 차수 후보군의 조합을 이용하여 정보량 기준으로 최종 모형으로 선택한다. 제안된 알고리즘을 평가하기 위하여, 내재적 모형 및 내재적 시계열의 종류에 따른 시뮬레이션 및 실증 분석을 수행하고 예측력을 ARIMA 모형과 비교한다. 예측 성능 평가 결과, 계수형 시계열 분석에서 ARIMA 모형에 비해 시계열 일반화 선형 모형의 예측 성능이 우수함을 확인할 수 있다. 또한 실증분석으로서, 살인사건 발생 건수의 예측결과 ARIMA 모형보다 중기 및 장기 예측에서 우수한 성능을 나타내는 것을 확인할 수 있다.

ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측 (Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model)

  • 백미경;김상민
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

시계열 모델 기반의 계절성에 특화된 S-ARIMA 모델을 사용한 리튬이온 배터리의 노화 예측 및 분석 (Degradation Prediction and Analysis of Lithium-ion Battery using the S-ARIMA Model with Seasonality based on Time Series Models)

  • 김승우;이평연;권상욱;김종훈
    • 전력전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.316-324
    • /
    • 2022
  • This paper uses seasonal auto-regressive integrated moving average (S-ARIMA), which is efficient in seasonality between time-series models, to predict the degradation tendency for lithium-ion batteries and study a method for improving the predictive performance. The proposed method analyzes the degradation tendency and extracted factors through an electrical characteristic experiment of lithium-ion batteries, and verifies whether time-series data are suitable for the S-ARIMA model through several statistical analysis techniques. Finally, prediction of battery aging is performed through S-ARIMA, and performance of the model is verified through error comparison of predictions through mean absolute error.

ARIM모형을 활용한 모듈러 건축시장 현황 조사 (Survey on the Market of Modular Building Using ARIMA Model)

  • 박남천;김균태;이유리
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.14-15
    • /
    • 2014
  • The modular construction is as yet early stage of market in Korea. So It is have difficulty of market demand forecast of the modular building. Therefore, this study was done analysis for market trends of the modular building using ARIMA(Auto Regressive Integrated Moving Average) model by time series data.

  • PDF

Test for Structural Change in ARIMA Models

  • 이상열;박시연
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.279-285
    • /
    • 2002
  • In this paper we consider the problem of testing for structural changes in ARIMA models based on a cusum test. In particular, the proposed test procedure is applicable to testing for a change of the status of time series from stationarity to nonstationarity or vice versa. The idea is to transform the time series via differencing to make stationary time series. We propose a graphical method to identify the correct order of differencing.

  • PDF

시계열 분석을 이용한 진동만의 용존산소량 예측 (Prediction of Dissolved Oxygen in Jindong Bay Using Time Series Analysis)

  • 한명수;박성은;최영진;김영민;황재동
    • 해양환경안전학회지
    • /
    • 제26권4호
    • /
    • pp.382-391
    • /
    • 2020
  • 본 연구에서는 인공지능기법을 이용하여 진동만의 용존산소량 예측을 하였다. 관측자료에 존재하는 결측 구간을 보간하기 위해 양방향재귀신경망(BRITS, Bidirectional Recurrent Imputation for Time Series) 딥러닝 알고리즘을 이용하였고, 대표적 시계열 예측 선형모델인 ARIMA(Auto-Regressive Integrated Moving Average)과 비선형모델 중 가장 많이 이용되고 있는 LSTM(Long Short-Term Memory) 모델을 이용하여 진동만의 용존산소량을 예측하고 그 성능을 평가했다. 결측 구간 보정 실험은 표층에서 높은 정확도로 보정이 가능했으나, 저층에서는 그 정확도가 낮았으며, 중층에서는 실험조건에 따라 정확도가 불안정하게 나타났다. 실험조건에 따라 정확도가 불안정하게 나타났다. 결과로부터 LSTM 모델이 중층과 저층에서 ARIMA 모델보다 우세한 정확도를 보였으나, 표층에서는 ARIMA모델의 정확도가 약간 높은 것으로 나타났다.

소셜데이터 및 ARIMA 분석을 활용한 소비자 관점의 헬스케어 기술수요 예측 연구 (A Study on the Demand Forecasting of Healthcare Technology from a Consumer Perspective : Using Social Data and ARIMA Model Approach)

  • 양동원;이준기
    • 한국IT서비스학회지
    • /
    • 제19권4호
    • /
    • pp.49-61
    • /
    • 2020
  • Prior studies on technology predictions attempted to predict the emergence and spread of emerging technologies through the analysis of correlations and changes between data using objective data such as patents and research papers. Most of the previous studies predicted future technologies only from the viewpoint of technology development. Therefore, this study intends to conduct technical forecasting from the perspective of the consumer by using keyword search frequency of search portals such as NAVER before and after the introduction of emerging technologies. In this study, we analyzed healthcare technologies into three types : measurement technology, platform technology, and remote service technology. And for the keyword analysis on the healthcare, we converted the classification of technology perspective into the keyword classification of consumer perspective. (Blood pressure and blood sugar, healthcare diagnosis, appointment and prescription, and remote diagnosis and prescription) Naver Trend is used to analyze keyword trends from a consumer perspective. We also used the ARIMA model as a technology prediction model. Analyzing the search frequency (Naver trend) over 44 months, the final ARIMA models that can predict three types of healthcare technology keyword trends were estimated as "ARIMA (1,2,1) (1,0,0)", "ARIMA (0,1,0) (1,0,0)", "ARIMA (1,1,0) (0,0,0)". In addition, it was confirmed that the values predicted by the time series prediction model and the actual values for 44 months were moving in almost similar patterns in all intervals. Therefore, we can confirm that this time series prediction model for healthcare technology is very suitable.

시계열 모형을 활용한 사회서비스 수요·공급모형 구축 : 발달재활서비스를 중심으로 (Constructing Demand and Supply Forecasting Model of Social Service using Time Series Analysis : Focusing on the Development Rehabilitation Service)

  • 서정민
    • 한국콘텐츠학회논문지
    • /
    • 제15권6호
    • /
    • pp.399-410
    • /
    • 2015
  • 본 연구의 목적은 사회서비스 수요를 구성하는 이용자 수와 제공기관 수를 예측 할 수 있도록 시계열 모형을 활용하여 각각의 예측 값을 구성하고, 실제 관측된 값과의 차이를 확인하여 사회서비스분야에서 시계열 예측모형의 타당성을 검증하는 연구이다. 분석 자료는 한국보건복지정보개발원에서 발간한 사회서비스 제공기관 공급실태분석에서 제시된 발달재활서비스 이용 현황을 연구 목적에 따라 가공하여 이차 분석하였다. 분석결과 이용자 수는 ARIMA(1,1,0) 모형이, 제공기관 수는 ARIMA(0,1,1) 모형이 최적의 예측모형으로 제시되었다. 예측모형에 의한 예측 값은 관측 값과의 어느 정도 차이는 있었지만, 관측값은 예측값의 최대값과 최소값의 범위에 놓여 있었다. 따라서 사회서비스의 이용자를 활용한 수요예측과 제공기관을 활용한 공급예측의 모형구축에 대한 타당성은 가능할 수 있음을 확인할 수 있었다.

연안암반대수층의 해수침투경향성 파악을 위한 전기전도도 시계열 분석과 예측 (Time Series Analysis and Forecasting of Electrical Conductivity in Coastal Aquifers)

  • 주정웅;여인욱
    • 자원환경지질
    • /
    • 제50권4호
    • /
    • pp.267-276
    • /
    • 2017
  • 전라남도는 연안지역은 농업활동과 상수도의 미보급으로 인하여 지하수에 크게 의존하고 있다. 지하수의 과다사용은 지하수위 저하를 일으키며 그로 인한 해수침투가 발생할 가능성이 매우 높다. 따라서 지하수 사용에 따른 해수침투 관리가 매우 필요한 지역이다. 전라남도 무안군의 연안암반대수층에서 측정된 EC 자료를 이용하여 해안가 대수층에 적합한 시계열 모형을 구축하고, 해수침투의 지표인 EC를 예측하고자 시계열 분석을 수행하였다. 1년 이상 측정한 EC 시계열 자료는 짧은 주기적인 변동과 함께 추세적으로 증가하는 비정상 시계열의 특성을 보였다. 시계열 분석을 통해 시계열 모형 식별 결과 ARIMA 모형과 계절적인 요인을 고려 할 수 있는 SARIMA 모형 이 적합한 것으로 나타났다. 하지만 두 모형 적용한 결과, EC의 주기적인 변동으로 인해 ARIMA보다는 EC 자료의 변동 특성을 잘 반영한 SARIMA 모형이 예측에 있어서 유리한 것으로 나타났다. 위와 같이 시계열 분석은 암반 대수층에서 해수침투로 인한 EC의 변화를 예측하는데 있어 유용한 것으로 나타났다.

SARIMA 시계열 모형을 이용한 환동해 물동량 예측 (Forecasting the East Sea Rim Container Volume by SARIMA Time Series Model)

  • 송민주;이희용
    • 무역학회지
    • /
    • 제45권5호
    • /
    • pp.75-89
    • /
    • 2020
  • The purpose of this paper was to analyze the trend of container volume using the Seasonal Autoregressive Intergrated Moving Average (SARIMA) model. To this end, this paper used monthly time-series data of the East Sea Rim from 2001 to 2019. As a result, the SARIMA(2,1,1)12 model was identified as the most suitable model, and the superiority of the SARIMA model was demonstrated by comparative analysis with the ARIMA model. In addition, to confirmed forecasting accuracy of SARIMA model, this paper compares the volume of predict container to the actual volume. According to the forecast for 24 months from 2020 to 2021, the volume of containaer increased from 60,100,000Ton in 2020 to 64,900,000Ton in 2021