본 논문에서는 KLAPS(Korea Local Analysis and Prediction System)의 재분석 자료를 이용하여 지능형 뉴로-퍼지 알고리즘 RBFNNs(Polynomial-based Radial Basis Function Neural Networks) 기반 호우특보 판별 모델을 개발한다. 기존의 호우예측 시스템들의 예측능력은 일반적으로 기상데이터의 가공 기법의 영향을 받는다. 본 연구에서는 이를 보완하기 위하여 기상데이터의 전처리를 통한 호우예측 방법을 소개한다. 기상 데이터 전처리 기법은 KLAPS 데이터를 기반으로 지점별 변환, 누적강수량 생성, 시계열 데이터 가공, 호우특보 추출 방식에 의하여 설계된다. 최종적으로, 향후 t(t=1,2,3) 시간 후 6시간 동안 누적강수량에 대해 예측하고 호우특보를 결정하기 위한 정보를 제공한다. 또한 다항식의 형태, 규칙의 개수, 퍼지화 계수와 같은 제안된 모델의 중요 파라미터는 최적화 기법인 차분 진화(Differential Evolution; DE)를 이용하여 최적화한다.
경제적인 국제화가 심화되어 세계경제가 통합화되는 환경에서 기업 및 개인 금융기관 등의 외환 거래 참가자들에게 회환거래로 인한 환위험의 회피방안이 무엇보다 절실하다. 이 방안을 마련하기 위해서 본 연구에서는 환율, 주가와 같은 시계열데이터의 모형추정에 적합한 모델을 통해 단기 환율의 예측모형을 추정하고 이를 통해 향 후 예측에 적용한다. 실제의 환율 데이터를 통하여 최적의 모형이 추정된다면 이를 통해 향후의 일정기간의 운동양태의 예측이 가능할 것이다. 은닉마아코프모형의 추정을 위하여 베이지안정보기준을 통해 모형의 상태 수를 정확하게 추정하는지를 확인하였으며 추정되는 모형으로 예측한 결과 실제 운동양태와 예측에 있어 두 곡선의 운동양태가 유사함을 확인하였다.
Ji, Woojong;Lee, Dongmin;Lim, Hyunsu;Pyo, Kiyoun;Lee, Dongyoun;Lee, Hak-Ju;Park, Insung;Kang, Kyung-In
한국건축시공학회지
/
제20권2호
/
pp.199-212
/
2020
In evaluating the competitiveness of construction companies and their development strategies, patents are a useful and objective source of technical information. In this study, the cutting-edge technologies of construction industries of China, Japan, and South Korea were investigated based on the data of patent applications filed by a total of 15 construction companies (five companies from each country). The related technologies were classified into six core technology groups based on their keywords. After that, we used four patent analysis methods: time series analysis, IP (Intellectual Property) emergence level analysis, spiral module analysis, and OS (Object-Solution) Matrix analysis, to identify the promising technologies/vacant technologies for global construction companies in China, Japan, and South Korea, and to analyze the technical competitiveness of the three countries. The findings of this study showed that each country can claim a relative technological advantage over the others. Overall, 3D printing and offsite construction technology, data acquisition technology, AR and VR technology are expected to be promising in the Asian region. The present study contributes to the body of knowledge by expanding our understanding of technological innovation for the competitiveness of companies and the technology development strategies pursued by the construction industries of China, Japan, and South Korea.
지역별 적정 주택량을 공급하기 위해 수요예측 모형을 구축한다 예측모형은 자료유형에 따라 다소 차이가 있으나 시계열자료(Time Series Data) 분석기법에 의한 모형 구축 시 추정대상 지역특성을 민감히 반영할 수 있는 영향인자가 필요하다. 도시지역을 인구규모로 분류하여 영향인자를 분석할 경우, 대도시와는 달리 중 $\cdot$ 소도시는 주택량과 상수도보급률의 변화가 일정기간 민감한 상관관계가 존재하는 것으로 조사되고 있다. 이에 따라 중 $\cdot$ 소도시 주택수요 예측을 위해 상수도보급률을 유용하게 적용할 수 있는 구간, 즉 예측모형 구축이 가능한 시점까지의 도시 주택량과 인구수 규모를 찾아낼 필요가 있다. 따라서, 전국 중 $\cdot$ 소도시를 대상으로 주택량과 상수도 보급률의 상관관계가 중 소도시 지역에서만 있는 것으로 조사된 기존 연구 결과를 재 입증하고, 지역별 상관관계가 완화되는 시점의 시기, 상수도보급률, 주택량, 인구수 규모를 발견하는 것을 본 연구의 목적으로 한다.
지속적으로 증가하는 국제선 항공수요에 대웅하기 위해 지방 광역권에도 새로운 공항 건설 및 기존 공항 확장 계획이 이루어지고 있다. 그러나 기존 항공수요예측은 우리나라 전체 항공수요 또는 주요 도시 간의 항공수요에 대해서 수행되어 왔으며, 지방의 고유 특성을 고려한 지역별 항공수요예측은 많이 이루어지지 않았다. 본 연구에서는 영남권 국제선 항공수요를 대상으로 하였고, 현실적으로 관측하기 어려운 지방 광역권의 고유 특성을 반영할 수 있는 패널 자료를 활용한 fixed-effects model을 최적 모형으로 제안하였다. 모형 검증결과를 살펴보면 패널 자료 분석은 시계열 특성을 가지는 몇 개의 거시 사회경제지표만을 사용한 모형에서 다루기 어려운 허구적 회귀와 미관찰 이질성을 효과적으로 처리하고 있음을 알 수 있다. 다양한 통계적 검증과 적합성 평가를 통해서 본 연구에서 제안한 fixed-effects model이 다른 계량경제 모형들에 비해서 영남권 국제선 수요예측에 있어서 우수함을 증명하였다.
본연구에서는 단순신경망의 구조와 특성을 이해하기 위해 신경회로망의 알고리듬을 이론적으로 분석하고 이를 토대로 프로그램을 설계 실행하여 신경망의 학습과정을 실험하였다. 본연구에서 채택한 학습알고리듬은 3계층구조의 역전파알고리듬이며 신경망의 모형은 단순의료전문가시스템모형을 입력치로 채택하였다. 계층수, 노드수, 학습사이클 수, 학습율, 모멘텀항등의 모수를 입력한 실험의 결과는 입력치에 대한 출력이 기대목표와 거의 일치하였다.
Journal of the Korean Data and Information Science Society
/
제24권1호
/
pp.161-170
/
2013
외환차액거래는 국제외환 시장에서 외국의 통화를 거래하는 것으로 현물시장에서 이뤄지는 장외 통화선물 거래를 의미한다. 외환차액거래 데이터를 이용하여 의사결정나무와 그래디언트 부스팅 방법을 이용한 수익모델을 비교하였다. 금융시장의 예측을 위해 사용되고 있는 시계열분석과 같은 방법들은 장기간의 예측 모형을 설명하기에 장점이 있지만, 파동이많고 짧은 시간에 가격이 급변하는 외환시장을 예측하기에는 한계가 있다. 따라서 본 논문에서는 단기간 즉 1, 3, 5분에서 외환시장의 수익구조를 의사결정나무와 앙상블기법의 하나인 그래디언트 부스팅으로 비교하여 매수, 매도거래 시 수익을 만들기 위한 규칙을 연구하였다.
최근 4차산업혁명으로 대두되는 기술혁명 변화에 농업분야도 환경변화에 효율적으로 대응하기 위해 ICT 기술을 적용한 스마트팜 구현 등의 혁신을 추구하고 있다. 하지만 이러한 혁신을 위한 변화기술은 다양한 공간정보에 기반한 농작물 현황에 대한 분석과 예측 기법이 필요하다. 이러한 분석기법은 주기적이고 과학적인 공간정보에 기반할 때 보다 과학적인 결과를 도출할 수 있다. 본 연구에서는 기상변화에 따라 민감하게 반응하는 배추, 무, 마늘, 양파, 고추를 선정하여 항공사진측량을 이용한 재배면적 추정, 채소 작황 현황 및 연도별 변화를 분석하였다. 본 연구 결과로 농업분야의 원격탐사를 활용한 재배면적 산정 및 작황현황 분석 가능성을 제시하였으며, 공간정보 기반의 채소주산단지 시계열 정보는 효율적인 농업환경 관측 자료로 활용될 것으로 예측된다.
최근 에너지 인터넷에서 지능형 원격검침 인프라를 이용하여 확보된 대량의 전력사용데이터를 기반으로 효과적인 전력수요 예측을 위해 다양한 기계학습기법에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 전력량 데이터와 같은 시계열 데이터에 대해 효율적으로 패턴인식을 수행하는 인공지능 네트워크인 Gated Recurrent Unit(GRU)을 기반으로 딥 러닝 모델을 제안하고, 실제 가정의 전력사용량 데이터를 토대로 예측 성능을 분석한다. 제안한 학습 모델의 예측 성능과 기존의 Long Short Term Memory (LSTM) 인공지능 네트워크 기반의 전력량 예측 성능을 비교하며, 성능평가 지표로써 Mean Squared Error (MSE), Mean Absolute Error (MAE), Forecast Skill Score, Normalized Root Mean Squared Error (RMSE), Normalized Mean Bias Error (NMBE)를 이용한다. 실험 결과에서 GRU기반의 제안한 시계열 데이터 예측 모델의 전력량 수요 예측 성능이 개선되는 것을 확인한다.
The necessity of the prediction on the Seasonal-to-Subseasonal (S2S) timescale continues to rise. It led a series of studies on the S2S prediction models, including the Global Seasonal Forecasting System Version 5 (GloSea5) of the Korea Meteorological Administration. By extending previous studies, the present study documents sea surface temperature (SST) prediction skill around the Korean peninsula in the GloSea5 hindcast over the period of 1991~2010. The overall SST prediction skill is about a week except for the regions where SST is not well captured at the initialized date. This limited prediction skill is partly due to the model mean biases which vary substantially from season to season. When such biases are systematically removed on daily and seasonal time scales the SST prediction skill is improved to 15 days. This improvement is mostly due to the reduced error associated with internal SST variability during model integrations. This result suggests that SST around the Korean peninsula can be reliably predicted with appropriate post-processing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.