• 제목/요약/키워드: Time Series Forecasting

검색결과 597건 처리시간 0.025초

KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계 (Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data)

  • 김현명;오성권;이용희
    • 한국지능시스템학회논문지
    • /
    • 제23권5호
    • /
    • pp.473-478
    • /
    • 2013
  • 본 논문에서는 KLAPS(Korea Local Analysis and Prediction System)의 재분석 자료를 이용하여 지능형 뉴로-퍼지 알고리즘 RBFNNs(Polynomial-based Radial Basis Function Neural Networks) 기반 호우특보 판별 모델을 개발한다. 기존의 호우예측 시스템들의 예측능력은 일반적으로 기상데이터의 가공 기법의 영향을 받는다. 본 연구에서는 이를 보완하기 위하여 기상데이터의 전처리를 통한 호우예측 방법을 소개한다. 기상 데이터 전처리 기법은 KLAPS 데이터를 기반으로 지점별 변환, 누적강수량 생성, 시계열 데이터 가공, 호우특보 추출 방식에 의하여 설계된다. 최종적으로, 향후 t(t=1,2,3) 시간 후 6시간 동안 누적강수량에 대해 예측하고 호우특보를 결정하기 위한 정보를 제공한다. 또한 다항식의 형태, 규칙의 개수, 퍼지화 계수와 같은 제안된 모델의 중요 파라미터는 최적화 기법인 차분 진화(Differential Evolution; DE)를 이용하여 최적화한다.

모델기반 방법론을 이용한 환율예측 모형 연구 (A Study of Exchange rate Prediction Model using Model-based)

  • 전진호;문석환;이채린
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.547-549
    • /
    • 2012
  • 경제적인 국제화가 심화되어 세계경제가 통합화되는 환경에서 기업 및 개인 금융기관 등의 외환 거래 참가자들에게 회환거래로 인한 환위험의 회피방안이 무엇보다 절실하다. 이 방안을 마련하기 위해서 본 연구에서는 환율, 주가와 같은 시계열데이터의 모형추정에 적합한 모델을 통해 단기 환율의 예측모형을 추정하고 이를 통해 향 후 예측에 적용한다. 실제의 환율 데이터를 통하여 최적의 모형이 추정된다면 이를 통해 향후의 일정기간의 운동양태의 예측이 가능할 것이다. 은닉마아코프모형의 추정을 위하여 베이지안정보기준을 통해 모형의 상태 수를 정확하게 추정하는지를 확인하였으며 추정되는 모형으로 예측한 결과 실제 운동양태와 예측에 있어 두 곡선의 운동양태가 유사함을 확인하였다.

  • PDF

Evaluating the Competitiveness of Asian Construction Companies through Patent Analysis

  • Ji, Woojong;Lee, Dongmin;Lim, Hyunsu;Pyo, Kiyoun;Lee, Dongyoun;Lee, Hak-Ju;Park, Insung;Kang, Kyung-In
    • 한국건축시공학회지
    • /
    • 제20권2호
    • /
    • pp.199-212
    • /
    • 2020
  • In evaluating the competitiveness of construction companies and their development strategies, patents are a useful and objective source of technical information. In this study, the cutting-edge technologies of construction industries of China, Japan, and South Korea were investigated based on the data of patent applications filed by a total of 15 construction companies (five companies from each country). The related technologies were classified into six core technology groups based on their keywords. After that, we used four patent analysis methods: time series analysis, IP (Intellectual Property) emergence level analysis, spiral module analysis, and OS (Object-Solution) Matrix analysis, to identify the promising technologies/vacant technologies for global construction companies in China, Japan, and South Korea, and to analyze the technical competitiveness of the three countries. The findings of this study showed that each country can claim a relative technological advantage over the others. Overall, 3D printing and offsite construction technology, data acquisition technology, AR and VR technology are expected to be promising in the Asian region. The present study contributes to the body of knowledge by expanding our understanding of technological innovation for the competitiveness of companies and the technology development strategies pursued by the construction industries of China, Japan, and South Korea.

주택수요 예측을 위한 주택량과 상수도보급률의 상관성 분석 (The Analysis on the Correlationship for Rousing Demands and Water Supply Ratio)

  • 양승원;박근준
    • 한국건설관리학회논문집
    • /
    • 제6권2호
    • /
    • pp.61-68
    • /
    • 2005
  • 지역별 적정 주택량을 공급하기 위해 수요예측 모형을 구축한다 예측모형은 자료유형에 따라 다소 차이가 있으나 시계열자료(Time Series Data) 분석기법에 의한 모형 구축 시 추정대상 지역특성을 민감히 반영할 수 있는 영향인자가 필요하다. 도시지역을 인구규모로 분류하여 영향인자를 분석할 경우, 대도시와는 달리 중 $\cdot$ 소도시는 주택량과 상수도보급률의 변화가 일정기간 민감한 상관관계가 존재하는 것으로 조사되고 있다. 이에 따라 중 $\cdot$ 소도시 주택수요 예측을 위해 상수도보급률을 유용하게 적용할 수 있는 구간, 즉 예측모형 구축이 가능한 시점까지의 도시 주택량과 인구수 규모를 찾아낼 필요가 있다. 따라서, 전국 중 $\cdot$ 소도시를 대상으로 주택량과 상수도 보급률의 상관관계가 중 소도시 지역에서만 있는 것으로 조사된 기존 연구 결과를 재 입증하고, 지역별 상관관계가 완화되는 시점의 시기, 상수도보급률, 주택량, 인구수 규모를 발견하는 것을 본 연구의 목적으로 한다.

미관찰 지역 특성을 고려한 내국인 국제선 항공수요 추정 모형 (Outbound Air Travel Demand Forecasting Model with Unobserved Regional Characteristics)

  • 유정훈;최정윤
    • 대한교통학회지
    • /
    • 제36권2호
    • /
    • pp.141-154
    • /
    • 2018
  • 지속적으로 증가하는 국제선 항공수요에 대웅하기 위해 지방 광역권에도 새로운 공항 건설 및 기존 공항 확장 계획이 이루어지고 있다. 그러나 기존 항공수요예측은 우리나라 전체 항공수요 또는 주요 도시 간의 항공수요에 대해서 수행되어 왔으며, 지방의 고유 특성을 고려한 지역별 항공수요예측은 많이 이루어지지 않았다. 본 연구에서는 영남권 국제선 항공수요를 대상으로 하였고, 현실적으로 관측하기 어려운 지방 광역권의 고유 특성을 반영할 수 있는 패널 자료를 활용한 fixed-effects model을 최적 모형으로 제안하였다. 모형 검증결과를 살펴보면 패널 자료 분석은 시계열 특성을 가지는 몇 개의 거시 사회경제지표만을 사용한 모형에서 다루기 어려운 허구적 회귀와 미관찰 이질성을 효과적으로 처리하고 있음을 알 수 있다. 다양한 통계적 검증과 적합성 평가를 통해서 본 연구에서 제안한 fixed-effects model이 다른 계량경제 모형들에 비해서 영남권 국제선 수요예측에 있어서 우수함을 증명하였다.

단순신경회로망의 설계 및 구현 (A Design And Implementation Of Simple Neural Networks System In Turbo Pascal)

  • 우원택
    • 한국정보시스템학회:학술대회논문집
    • /
    • 한국정보시스템학회 2000년도 추계학술대회
    • /
    • pp.1.2-24
    • /
    • 2000
  • 본연구에서는 단순신경망의 구조와 특성을 이해하기 위해 신경회로망의 알고리듬을 이론적으로 분석하고 이를 토대로 프로그램을 설계 실행하여 신경망의 학습과정을 실험하였다. 본연구에서 채택한 학습알고리듬은 3계층구조의 역전파알고리듬이며 신경망의 모형은 단순의료전문가시스템모형을 입력치로 채택하였다. 계층수, 노드수, 학습사이클 수, 학습율, 모멘텀항등의 모수를 입력한 실험의 결과는 입력치에 대한 출력이 기대목표와 거의 일치하였다.

  • PDF

외환거래에서 의사결정나무와 그래디언트 부스팅을 이용한 수익 모형 연구 (The study of foreign exchange trading revenue model using decision tree and gradient boosting)

  • 정지현;민대기
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권1호
    • /
    • pp.161-170
    • /
    • 2013
  • 외환차액거래는 국제외환 시장에서 외국의 통화를 거래하는 것으로 현물시장에서 이뤄지는 장외 통화선물 거래를 의미한다. 외환차액거래 데이터를 이용하여 의사결정나무와 그래디언트 부스팅 방법을 이용한 수익모델을 비교하였다. 금융시장의 예측을 위해 사용되고 있는 시계열분석과 같은 방법들은 장기간의 예측 모형을 설명하기에 장점이 있지만, 파동이많고 짧은 시간에 가격이 급변하는 외환시장을 예측하기에는 한계가 있다. 따라서 본 논문에서는 단기간 즉 1, 3, 5분에서 외환시장의 수익구조를 의사결정나무와 앙상블기법의 하나인 그래디언트 부스팅으로 비교하여 매수, 매도거래 시 수익을 만들기 위한 규칙을 연구하였다.

항공사진측량을 이용한 채소주산단지 재배면적 추정 연구 (A Study on Estimating the Vegetable Cultivation Complex Area using Aerial Photogrammetry)

  • 배경호;함건우;이정민
    • 한국지리정보학회지
    • /
    • 제21권4호
    • /
    • pp.108-118
    • /
    • 2018
  • 최근 4차산업혁명으로 대두되는 기술혁명 변화에 농업분야도 환경변화에 효율적으로 대응하기 위해 ICT 기술을 적용한 스마트팜 구현 등의 혁신을 추구하고 있다. 하지만 이러한 혁신을 위한 변화기술은 다양한 공간정보에 기반한 농작물 현황에 대한 분석과 예측 기법이 필요하다. 이러한 분석기법은 주기적이고 과학적인 공간정보에 기반할 때 보다 과학적인 결과를 도출할 수 있다. 본 연구에서는 기상변화에 따라 민감하게 반응하는 배추, 무, 마늘, 양파, 고추를 선정하여 항공사진측량을 이용한 재배면적 추정, 채소 작황 현황 및 연도별 변화를 분석하였다. 본 연구 결과로 농업분야의 원격탐사를 활용한 재배면적 산정 및 작황현황 분석 가능성을 제시하였으며, 공간정보 기반의 채소주산단지 시계열 정보는 효율적인 농업환경 관측 자료로 활용될 것으로 예측된다.

에너지 인터넷을 위한 GRU기반 전력사용량 예측 (Prediction of Power Consumptions Based on Gated Recurrent Unit for Internet of Energy)

  • 이동구;선영규;심이삭;황유민;김수환;김진영
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.120-126
    • /
    • 2019
  • 최근 에너지 인터넷에서 지능형 원격검침 인프라를 이용하여 확보된 대량의 전력사용데이터를 기반으로 효과적인 전력수요 예측을 위해 다양한 기계학습기법에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 전력량 데이터와 같은 시계열 데이터에 대해 효율적으로 패턴인식을 수행하는 인공지능 네트워크인 Gated Recurrent Unit(GRU)을 기반으로 딥 러닝 모델을 제안하고, 실제 가정의 전력사용량 데이터를 토대로 예측 성능을 분석한다. 제안한 학습 모델의 예측 성능과 기존의 Long Short Term Memory (LSTM) 인공지능 네트워크 기반의 전력량 예측 성능을 비교하며, 성능평가 지표로써 Mean Squared Error (MSE), Mean Absolute Error (MAE), Forecast Skill Score, Normalized Root Mean Squared Error (RMSE), Normalized Mean Bias Error (NMBE)를 이용한다. 실험 결과에서 GRU기반의 제안한 시계열 데이터 예측 모델의 전력량 수요 예측 성능이 개선되는 것을 확인한다.

GloSea5 모형의 한반도 인근 해수면 온도 예측성 평가: 편차 보정에 따른 개선 (Evaluation of Sea Surface Temperature Prediction Skill around the Korean Peninsula in GloSea5 Hindcast: Improvement with Bias Correction)

  • 강동우;조형오;손석우;이조한;현유경;부경온
    • 대기
    • /
    • 제31권2호
    • /
    • pp.215-227
    • /
    • 2021
  • The necessity of the prediction on the Seasonal-to-Subseasonal (S2S) timescale continues to rise. It led a series of studies on the S2S prediction models, including the Global Seasonal Forecasting System Version 5 (GloSea5) of the Korea Meteorological Administration. By extending previous studies, the present study documents sea surface temperature (SST) prediction skill around the Korean peninsula in the GloSea5 hindcast over the period of 1991~2010. The overall SST prediction skill is about a week except for the regions where SST is not well captured at the initialized date. This limited prediction skill is partly due to the model mean biases which vary substantially from season to season. When such biases are systematically removed on daily and seasonal time scales the SST prediction skill is improved to 15 days. This improvement is mostly due to the reduced error associated with internal SST variability during model integrations. This result suggests that SST around the Korean peninsula can be reliably predicted with appropriate post-processing.