• Title/Summary/Keyword: Time Series Forecast

Search Result 371, Processing Time 0.023 seconds

A study on time series linkage in the Household Income and Expenditure Survey (가계동향조사 지출부문 시계열 연계 방안에 관한 연구)

  • Kim, Sihyeon;Seong, Byeongchan;Choi, Young-Geun;Yeo, In-kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.553-568
    • /
    • 2022
  • The Household Income and Expenditure Survey is a representative survey of Statistics Korea, which aims to measure and analyze national income and consumption levels and their changes by understanding the current state of household balances. Recently, the disconnection problem in these time series caused by the large-scale reorganization of the survey methods in 2017 and 2019 has become an issue. In this study, we model the characteristics of the time series in the Household Income and Expenditure Survey up to 2016, and use the modeling to compute forecasts for linking the expenditures in 2017 and 2018. In order to evenly reflect the characteristics across all expenditure item series and to reduce the impact of a specific forecast model, we synthesize a total of 8 models such as regression models, time series models, and machine learning techniques. In particular, the noteworthy aspect of this study is that it improves the forecast by using the optimal combination technique that can exactly reflect the hierarchical structure of the Household Income and Expenditure Survey without loss of information as in the top-down or bottom-up methods. As a result of applying the proposed method to forecast expenditure series from 2017 to 2019, it contributed to the recovery of time series linkage and improved the forecast. In addition, it was confirmed that the hierarchical time series forecasts by the optimal combination method make linkage results closer to the actual survey series.

Study on the Feasibility of Applying Forecasted Weather Data for Operations of a Thermal Storage System (축열운전을 위한 기상예보치의 이용가능성에 대한 검토)

  • Jung Jae-Hoon;Shin Young-Gy;Park Byung-Yoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.87-94
    • /
    • 2006
  • In this paper, we investigated a feasibility of applying highest and lowest temperatures of the next day forecasted from a meteorological observatory to operation of an air-conditioning system with thermal storage. First we investigated specific characteristics of the time series of forecasted temperatures and errors in Osaka from 1994 to 1996. Since the forecast error is not always small, it might be difficult to use the forecasted data without correction for the sizing and the control of the thermal storage system. On the other hand, the autocorrelation functions of the forecast errors decrease relatively slowly during high summer season when cooling thermal storage is required. Since the values of the autocorrelation function; for one day are larger than 0.4, not small, the forecast errors can be predicted by proper statistical analysis. Thus, the forecasted values of the highest temperatures for the next day were improved by using the stochastic time series models.

Hourly Average Wind Speed Simulation and Forecast Based on ARMA Model in Jeju Island, Korea

  • Do, Duy-Phuong N.;Lee, Yeonchan;Choi, Jaeseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1548-1555
    • /
    • 2016
  • This paper presents an application of time series analysis in hourly wind speed simulation and forecast in Jeju Island, Korea. Autoregressive - moving average (ARMA) model, which is well in description of random data characteristics, is used to analyze historical wind speed data (from year of 2010 to 2012). The ARMA model requires stationary variables of data is satisfied by power law transformation and standardization. In this study, the autocorrelation analysis, Bayesian information criterion and general least squares algorithm is implemented to identify and estimate parameters of wind speed model. The ARMA (2,1) models, fitted to the wind speed data, simulate reference year and forecast hourly wind speed in Jeju Island.

Survey on the Market of Modular Building Using ARIMA Model (ARIM모형을 활용한 모듈러 건축시장 현황 조사)

  • Park, Nam-Cheon;Kim, Kyoon-Tai;Lee, Yuril
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.14-15
    • /
    • 2014
  • The modular construction is as yet early stage of market in Korea. So It is have difficulty of market demand forecast of the modular building. Therefore, this study was done analysis for market trends of the modular building using ARIMA(Auto Regressive Integrated Moving Average) model by time series data.

  • PDF

BIM-BASED TIME SERIES COST MODEL FOR BUILDING PROJECTS: FOCUSING ON MATERIAL PRICES

  • Sungjoo Hwang;Moonseo Park;Hyun-Soo Lee;Hyunsoo Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.1-6
    • /
    • 2011
  • As large-scale building projects have recently increased for the residential, commercial and office facilities, construction costs for these projects have become a matter of great concern, due to their significant construction cost implications, as well as unpredictable market conditions and fluctuations in the rate of inflation during the projects' long-term construction periods. In particular, recent volatile fluctuations of construction material prices fueled such problems as cost forecasting. This research develops a time series model using the Box-Jenkins approach and material price time series data in Korea in order to forecast trends in the unit prices of required materials. Building information modeling (BIM) approaches are also used to analyze injection times of construction resources and to conduct quantity take-off so that total material prices can be forecast. To determine an optimal time series model for forecasting price trends, comparative analysis of predictability of tentative autoregressive integrated moving average (ARIMA) models is conducted. The proposed BIM-based time series forecasting model can help to deal with sudden changes in economic conditions by estimating material prices that correspond to resource injection times.

  • PDF

Short-Term Load Forecast for Near Consecutive Holidays Having The Mixed Load Profile Characteristics of Weekdays and Weekends (평일과 주말의 특성이 결합된 연휴전 평일에 대한 단기 전력수요예측)

  • Park, Jeong-Do;Song, Kyung-Bin;Lim, Hyeong-Woo;Park, Hae-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1765-1773
    • /
    • 2012
  • The accuracy of load forecast is very important from the viewpoint of economical power system operation. In general, the weekdays' load demand pattern has the continuous time series characteristics. Therefore, the conventional methods expose stable performance for weekdays. In case of special days or weekends, the load demand pattern has the discontinuous time series characteristics, so forecasting error is relatively high. Especially, weekdays near the thanksgiving day and lunar new year's day have the mixed load profile characteristics of both weekdays and weekends. Therefore, it is difficult to forecast these days by using the existing algorithms. In this study, a new load forecasting method is proposed in order to enhance the accuracy of the forecast result considering the characteristics of weekdays and weekends. The proposed method was tested with these days during last decades, which shows that the suggested method considerably improves the accuracy of the load forecast results.

A Daily Maximum Load Forecasting System Using Chaotic Time Series (Chaos를 이용한 단기부하예측)

  • Choi, Jae-Gyun;Park, Jong-Keun;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.578-580
    • /
    • 1995
  • In this paper, a method for the daily maximum load forecasting which uses a chaotic time series in power system and artificial neural network. We find the characteristics of chaos in power load curve and then determine a optimal embedding dimension and delay time, For the load forecast of one day ahead daily maximum power, we use the time series load data obtained in previous year. By using of embedding dimension and delay time, we construct a strange attractor in pseudo phase plane and the artificial neural network model trained with the attractor font mentioned above. The one day ahead forecast errors are about 1.4% of absolute percentage average error.

  • PDF

A short-term Load Forecasting Using Chaotic Time Series (Chaos특성을 이용한 단기부하예측)

  • Choi, Jae-Gyun;Park, Jong-Keun;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.835-837
    • /
    • 1996
  • In this paper, a method for the daily maximum load forecasting which uses a chaotic time series in power system and artificial neural network(Back-propagation) is proposed. We find the characteristics of chaos in power load curve and then determine a optimal embedding dimension and delay time. For the load forecast of one day ahead daily maximum power, we use the time series load data obtained in previous year. By using of embedding dimension and delay time, we construct a strange attractor in pseudo phase plane and the artificial neural network model trained with the attractor mentioned above. The one day ahead forecast errors are about 1.4% for absolute percentage average error.

  • PDF

Fashion Brand Sales Forecasting Analysis Using ARDL Time Series Model -Focusing on Brand and Advertising Endorser's Web Search Volume, Information Amount, and Brand Promotion- (ARDL 시계열 모형을 활용한 패션 브랜드의 매출 예측 분석 -패션 브랜드와 광고모델의 웹 검색량, 정보량, 가격할인 프로모션을 중심으로-)

  • Seo, Jooyeon;Kim, Hyojung;Park, Minjung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.5
    • /
    • pp.868-889
    • /
    • 2022
  • Fashion companies are using a big data approach as a key strategic analysis to predict and forecast sales. This study investigated the effectiveness of the past sales, web search volume, information amount, brand promotion, and the advertising endorser on the sales forecasting model. The study conducted the autoregressive distributed lag (ARDL) time series model using the internal and external social big data of a national fashion brand. Results indicated that the brand's past sales, search volume, promotion, and amount of advertising endorser information amount significantly affected the sales forecast, whereas the brand's advertising endorser search volume and information amount did not significantly influence the sales forecast. Moreover, the brand's promotion had the highest correlation with sales forecasting. This study adds to information-searching behavior theory by measuring consumers' brand involvement. Last, this study provides digital marketers with implications for developing profitable marketing strategies on the basis of consumers' interest in the brand and advertising endorser.

EMD based hybrid models to forecast the KOSPI (코스피 예측을 위한 EMD를 이용한 혼합 모형)

  • Kim, Hyowon;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.525-537
    • /
    • 2016
  • The paper considers a hybrid model to analyze and forecast time series data based on an empirical mode decomposition (EMD) that accommodates complex characteristics of time series such as nonstationarity and nonlinearity. We aggregate IMFs using the concept of cumulative energy to improve the interpretability of intrinsic mode functions (IMFs) from EMD. We forecast aggregated IMFs and residue with a hybrid model that combines the ARIMA model and an exponential smoothing method (ETS). The proposed method is applied to forecast KOSPI time series and is compared to traditional forecast models. Aggregated IMFs and residue provide a convenience to interpret the short, medium and long term dynamics of the KOSPI. It is also observed that the hybrid model with ARIMA and ETS is superior to traditional and other types of hybrid models.