• Title/Summary/Keyword: Time Series Data Analysis

Search Result 1,836, Processing Time 0.038 seconds

Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model (ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

Analysis of Multivariate Financial Time Series Using Cointegration : Case Study

  • Choi, M.S.;Park, J.A.;Hwang, S.Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • Cointegration(together with VARMA(vector ARMA)) has been proven to be useful for analyzing multivariate non-stationary data in the field of financial time series. It provides a linear combination (which turns out to be stationary series) of non-stationary component series. This linear combination equation is referred to as long term equilibrium between the component series. We consider two sets of Korean bivariate financial time series and then illustrate cointegration analysis. Specifically estimated VAR(vector AR) and VECM(vector error correction model) are obtained and CV(cointegrating vector) is found for each data sets.

  • PDF

Development of a Period Analysis Algorithm for Detecting Variable Stars in Time-Series Observational Data

  • Kim, Dong-Heun;Kim, Yonggi;Yoon, Joh-Na;Im, Hong-Seo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.283-292
    • /
    • 2019
  • The purpose of this study was to develop a period analysis algorithm for detecting new variable stars in the time-series data observed by charge coupled device (CCD). We used the data from a variable star monitoring program of the CBNUO. The R filter data of some magnetic cataclysmic variables observed for more than 20 days were chosen to achieve good statistical results. World Coordinate System (WCS) Tools was used to correct the rotation of the observed images and assign the same IDs to the stars included in the analyzed areas. The developed algorithm was applied to the data of DO Dra, TT Ari, RXSJ1803, and MU Cam. In these fields, we found 13 variable stars, five of which were new variable stars not previously reported. Our period analysis algorithm were tested in the case of observation data mixed with various fields of view because the observations were carried with 2K CCD as well as 4K CCD at the CBNUO. Our results show that variable stars can be detected using our algorithm even with observational data for which the field of view has changed. Our algorithm is useful to detect new variable stars and analyze them based on existing time-series data. The developed algorithm can play an important role as a recycling technique for used data

Fuzzy Semiparametric Support Vector Regression for Seasonal Time Series Analysis

  • Shim, Joo-Yong;Hwang, Chang-Ha;Hong, Dug-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.335-348
    • /
    • 2009
  • Fuzzy regression is used as a complement or an alternative to represent the relation between variables among the forecasting models especially when the data is insufficient to evaluate the relation. Such phenomenon often occurs in seasonal time series data which require large amount of data to describe the underlying pattern. Semiparametric model is useful tool in the case where domain knowledge exists about the function to be estimated or emphasis is put onto understandability of the model. In this paper we propose fuzzy semiparametric support vector regression so that it can provide good performance on forecasting of the seasonal time series by incorporating into fuzzy support vector regression the basis functions which indicate the seasonal variation of time series. In order to indicate the performance of this method, we present two examples of predicting the seasonal time series. Experimental results show that the proposed method is very attractive for the seasonal time series in fuzzy environments.

Land-Cover Vegetation Change Detection based on Harmonic Analysis of MODIS NDVI Time Series Data (MODIS NDVI 시계열 자료의 하모닉 분석을 통한 지표 식생 변화 탐지)

  • Jung, Myunghee;Chang, Eunmi
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.351-360
    • /
    • 2013
  • Harmonic analysis enables to characterize patterns of variation in MODIS NDVI time series data and track changes in ground vegetation cover. In harmonic analysis, a periodic phenomenon of time series data is decomposed into the sum of a series of sinusoidal waves and an additive term. Each wave is defined by an amplitude and a phase angle and accounts for the portion of variance of complex curve. In this study, harmonic analysis was explored to tract ground vegetation variation through time for land-cover vegetation change detection. The process also enables to reconstruct observed time series data including various noise components. Harmonic model was tested with simulation data to validate its performance. Then, the suggested change detection method was applied to MODIS NDVI time series data over the study period (2006-2012) for a selected test area located in the northern plateau of Korean peninsula. The results show that the proposed approach is potentially an effective way to understand the pattern of NDVI variation and detect the change for long-term monitoring of land cover.

Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM (딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증)

  • Cha, Sungjae;Kang, Jungseok
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-32
    • /
    • 2018
  • In addition to stakeholders including managers, employees, creditors, and investors of bankrupt companies, corporate defaults have a ripple effect on the local and national economy. Before the Asian financial crisis, the Korean government only analyzed SMEs and tried to improve the forecasting power of a default prediction model, rather than developing various corporate default models. As a result, even large corporations called 'chaebol enterprises' become bankrupt. Even after that, the analysis of past corporate defaults has been focused on specific variables, and when the government restructured immediately after the global financial crisis, they only focused on certain main variables such as 'debt ratio'. A multifaceted study of corporate default prediction models is essential to ensure diverse interests, to avoid situations like the 'Lehman Brothers Case' of the global financial crisis, to avoid total collapse in a single moment. The key variables used in corporate defaults vary over time. This is confirmed by Beaver (1967, 1968) and Altman's (1968) analysis that Deakins'(1972) study shows that the major factors affecting corporate failure have changed. In Grice's (2001) study, the importance of predictive variables was also found through Zmijewski's (1984) and Ohlson's (1980) models. However, the studies that have been carried out in the past use static models. Most of them do not consider the changes that occur in the course of time. Therefore, in order to construct consistent prediction models, it is necessary to compensate the time-dependent bias by means of a time series analysis algorithm reflecting dynamic change. Based on the global financial crisis, which has had a significant impact on Korea, this study is conducted using 10 years of annual corporate data from 2000 to 2009. Data are divided into training data, validation data, and test data respectively, and are divided into 7, 2, and 1 years respectively. In order to construct a consistent bankruptcy model in the flow of time change, we first train a time series deep learning algorithm model using the data before the financial crisis (2000~2006). The parameter tuning of the existing model and the deep learning time series algorithm is conducted with validation data including the financial crisis period (2007~2008). As a result, we construct a model that shows similar pattern to the results of the learning data and shows excellent prediction power. After that, each bankruptcy prediction model is restructured by integrating the learning data and validation data again (2000 ~ 2008), applying the optimal parameters as in the previous validation. Finally, each corporate default prediction model is evaluated and compared using test data (2009) based on the trained models over nine years. Then, the usefulness of the corporate default prediction model based on the deep learning time series algorithm is proved. In addition, by adding the Lasso regression analysis to the existing methods (multiple discriminant analysis, logit model) which select the variables, it is proved that the deep learning time series algorithm model based on the three bundles of variables is useful for robust corporate default prediction. The definition of bankruptcy used is the same as that of Lee (2015). Independent variables include financial information such as financial ratios used in previous studies. Multivariate discriminant analysis, logit model, and Lasso regression model are used to select the optimal variable group. The influence of the Multivariate discriminant analysis model proposed by Altman (1968), the Logit model proposed by Ohlson (1980), the non-time series machine learning algorithms, and the deep learning time series algorithms are compared. In the case of corporate data, there are limitations of 'nonlinear variables', 'multi-collinearity' of variables, and 'lack of data'. While the logit model is nonlinear, the Lasso regression model solves the multi-collinearity problem, and the deep learning time series algorithm using the variable data generation method complements the lack of data. Big Data Technology, a leading technology in the future, is moving from simple human analysis, to automated AI analysis, and finally towards future intertwined AI applications. Although the study of the corporate default prediction model using the time series algorithm is still in its early stages, deep learning algorithm is much faster than regression analysis at corporate default prediction modeling. Also, it is more effective on prediction power. Through the Fourth Industrial Revolution, the current government and other overseas governments are working hard to integrate the system in everyday life of their nation and society. Yet the field of deep learning time series research for the financial industry is still insufficient. This is an initial study on deep learning time series algorithm analysis of corporate defaults. Therefore it is hoped that it will be used as a comparative analysis data for non-specialists who start a study combining financial data and deep learning time series algorithm.

Evolutionary Computation-based Hybird Clustring Technique for Manufacuring Time Series Data (제조 시계열 데이터를 위한 진화 연산 기반의 하이브리드 클러스터링 기법)

  • Oh, Sanghoun;Ahn, Chang Wook
    • Smart Media Journal
    • /
    • v.10 no.3
    • /
    • pp.23-30
    • /
    • 2021
  • Although the manufacturing time series data clustering technique is an important grouping solution in the field of detecting and improving manufacturing large data-based equipment and process defects, it has a disadvantage of low accuracy when applying the existing static data target clustering technique to time series data. In this paper, an evolutionary computation-based time series cluster analysis approach is presented to improve the coherence of existing clustering techniques. To this end, first, the image shape resulting from the manufacturing process is converted into one-dimensional time series data using linear scanning, and the optimal sub-clusters for hierarchical cluster analysis and split cluster analysis are derived based on the Pearson distance metric as the target of the transformation data. Finally, by using a genetic algorithm, an optimal cluster combination with minimal similarity is derived for the two cluster analysis results. And the performance superiority of the proposed clustering is verified by comparing the performance with the existing clustering technique for the actual manufacturing process image.

Evaluating Efficacy of Hilbert-Huang Transform in Analyzing Manufacturing Time Series Data with Periodic Components (제조업의 주기성 시계열분석에서 힐버트 황 변환의 효용성 평가)

  • Lee, Sae-Jae;Suh, Jung-Yul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.106-112
    • /
    • 2012
  • Real-life time series characteristic data has significant amount of non-stationary components, especially periodic components in nature. Extracting such components has required many ad-hoc techniques with external parameters set by users in case-by-case manner. In our study, we evaluate whether Hilbert-Huang Transform, a new tool of time-series analysis can be used for effective analysis of such data. It is divided into two points : 1) how effective it is in finding periodic components, 2) whether we can use its results directly in detecting values outside control limits, for which a traditional method such as ARIMA had been used. We use glass furnace temperature data to illustrate the method.

A novel window strategy for concept drift detection in seasonal time series (계절성 시계열 자료의 concept drift 탐지를 위한 새로운 창 전략)

  • Do Woon Lee;Sumin Bae;Kangsub Kim;Soonhong An
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.377-379
    • /
    • 2023
  • Concept drift detection on data stream is the major issue to maintain the performance of the machine learning model. Since the online stream is to be a function of time, the classical statistic methods are hard to apply. In particular case of seasonal time series, a novel window strategy with Fourier analysis however, gives a chance to adapt the classical methods on the series. We explore the KS-test for an adaptation of the periodic time series and show that this strategy handles a complicate time series as an ordinary tabular dataset. We verify that the detection with the strategy takes the second place in time delay and shows the best performance in false alarm rate and detection accuracy comparing to that of arbitrary window sizes.

Fuzzy Logic-based Modeling of a Score (퍼지 이론을 이용한 악보의 모델링)

  • 손세호;권순학
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.211-214
    • /
    • 2001
  • In this paper, we interpret a score as a time series and deal with the fuzzy logic-based modeling of it. The musical notes in a score represent a lot of information about the length of a sound and pitches, etc. In this paper, using melodies, tones and pitches in a score, we transform data on a score into a time series. Once more, we form the new time series by sliding a window through the time series. For analyzing the time series data, we make use of the Box-Jenkinss time series analysis. On the basis of the identified characteristics of time series, we construct the fuzz model.

  • PDF