• 제목/요약/키워드: Time Series Data Analysis

검색결과 1,862건 처리시간 0.034초

Change points detection for nonstationary multivariate time series

  • Yeonjoo Park;Hyeongjun Im;Yaeji Lim
    • Communications for Statistical Applications and Methods
    • /
    • 제30권4호
    • /
    • pp.369-388
    • /
    • 2023
  • In this paper, we develop the two-step procedure that detects and estimates the position of structural changes for multivariate nonstationary time series, either on mean parameters or second-order structures. We first investigate the presence of mean structural change by monitoring data through the aggregated cumulative sum (CUSUM) type statistic, a sequential procedure identifying the likely position of the change point on its trend. If no mean change point is detected, the proposed method proceeds to scan the second-order structural change by modeling the multivariate nonstationary time series with a multivariate locally stationary Wavelet process, allowing the time-localized auto-correlation and cross-dependence. Under this framework, the estimated dynamic spectral matrices derived from the local wavelet periodogram capture the time-evolving scale-specific auto- and cross-dependence features of data. We then monitor the change point from the lower-dimensional approximated space of the spectral matrices over time by applying the dynamic principal component analysis. Different from existing methods requiring prior information on the type of changes between mean and covariance structures as an input for the implementation, the proposed algorithm provides the output indicating the type of change and the estimated location of its occurrence. The performance of the proposed method is demonstrated in simulations and the analysis of two real finance datasets.

중선형 모형을 이용한 비선형 시계열 패널자료의 동질성검정에 대한 연구 (A Study on the Test of Homogeneity for Nonlinear Time Series Panel Data Using Bilinear Models)

  • 김인규
    • 디지털융복합연구
    • /
    • 제12권7호
    • /
    • pp.261-266
    • /
    • 2014
  • 시계열 모형에서 모수의 수가 많으면 모수추정에 따르는 오차가 커지게 되므로 예측을 하는데 많은 어려움이 있다. 만약 여러개의 시계열 자료들이 동일한 모형에서부터 얻어졌다고 하는 동질성 가설이 채택되면 모수축약을 이룰 수 있고, 더 좋은 예측값을 얻을 수 있다. 비선형 시계열 패널 자료는 각각의 시계열마다 모수들이 있기 때문에 매우 많은 모수가 존재하게되고, 모수의 수가 많으면 모수추정에 따르는 오차가 커지게 되어 예측의 정확도가 떨어지게 된다. 패널내에 존재하는 독립적인 여러 시계열들의 동질성이 만족되면 시계열을 종합하여 모수를 추정하고 검정할 수 있다. m개의 독립적인 비선형 시계열 패널 자료의 동질성 검정을 알아보기 위하여 모형을 설정하고 이 모형에 대한 정상성 조건을 구하였고, 동질성 검정통계량을 유도했으며, 구한 검정 통계량의 극한분포가 ${\chi}^2$ 분포를 따르는 것을 보였다. 실증분석에 있어서는 비선형 시계열 자료중 중선형 시계열 모형의 동질성 검정을 하고, 실제 우리나라 주식자료를 2개의 집단으로 나누어 비선형 시계열 패널 자료의 동질성 검정에 대한 분석을 하였다.

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제35권4호
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

LSTM과 Bi-LSTM을 사용한 비주기성 시계열 데이터 예측 성능 비교 분석 (Comparative Analysis of Prediction Performance of Aperiodic Time Series Data using LSTM and Bi-LSTM)

  • 이주형;홍준기
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.217-224
    • /
    • 2022
  • 온라인 쇼핑의 대중화로 인해 많은 의류 상품이 온라인 쇼핑을 통해 소비된다. 의류 상품은 다른 상품과 달리 판매량이 일정하지 않고 날씨의 변화에 따라 판매량이 변화하는 특징이 있다. 따라서 의류 상품의 머신 러닝을 적용한 효율적인 재고 관리 시스템에 대한 연구는 매우 중요하다. 본 논문에서는 의류 업체 'A'로부터 실제 의류 상품 판매량 데이터를 수집하고 판매량 데이터와 같은 시계열 데이터의 예측에 많이 활용되는 LSTM(Long Short-Term Memory)과 Bidirectional-LSTM(Bi-LSTM)의 학습에 사용하여 LSTM과 Bi-LSTM의 판매량 예측 효율을 비교 분석하였다. 시뮬레이션 결과를 통해 LSTM 기술 대비 Bi-LSTM은 시뮬레이션 시간은 더 많이 소요되지만 의류 상품 판매량 데이터와 같은 비주기성 시계열 데이터의 예측 정확도가 동일하다는 것을 확인하였다.

MCG 시계열 신호에서 RR간격 분석 (The Hurst Exponent of RR Intervals in MCG Heartbeat Time Series)

  • 이형;민준영;이인정
    • Journal of Information Technology Applications and Management
    • /
    • 제12권4호
    • /
    • pp.25-31
    • /
    • 2005
  • We know that the Hurst Exponent (HE) is a real number in [0, 1] which denotes randomness of time series. in this research, we suggest non-linear analysis of human biological signals through HE. The feasibility of human biological signals using inductive incitement provides Some diagnosis for active treatment. In our experiment, we measured the heartbeat through the MCG, 29 healthy and 34 abnormal subjects ostensibly. The raw data of acupuncture incitement are supported by opinions of gross examination and pathological diagnosis. The mean values of HE are 0.345, 0.755 and 0.805 for the periods of before, during and after acupuncture treatment, respectively in case of abnormal subjects. On the other hand, the mean values, 0.808, 0.797 and 0.785 are for normal cases, correspondingly. From this data, we show that HE is very significant in abnormal controls according to an acupuncture incitement, and the incitement effect is evidently extracted in abnormal subjects. But, in normal subjects, the incitement effect is meaningless.

  • PDF

EOF와 CSEOF를 이용한 한반도 강수의 변동성 분석 (Investigation of Korean Precipitation Variability using EOFs and Cyclostationary EOFs)

  • 김광섭;순밍동
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1260-1264
    • /
    • 2009
  • Precipitation time series is a mixture of complicate fluctuation and changes. The monthly precipitation data of 61 stations during 36 years (1973-2008) in Korea are comprehensively analyzed using the EOFs technique and CSEOFs technique respectively. The main motivation for employing this technique in the present study is to investigate the physical processes associated with the evolution of the precipitation from observation data. The twenty-five leading EOF modes account for 98.05% of the total monthly variance, and the first two modes account for 83.68% of total variation. The first mode exhibits traditional spatial pattern with annual cycle of corresponding PC time series and second mode shows strong North South gradient. In CSEOF analysis, the twenty-five leading CSEOF modes account for 98.58% of the total monthly variance, and the first two modes account for 78.69% of total variation, these first two patterns' spatial distribution show monthly spatial variation. The corresponding mode's PC time series reveals the annual cycle on a monthly time scale and long-term fluctuation and first mode's PC time series shows increasing linear trend which represents that spatial and temporal variability of first mode pattern has strengthened. Compared with the EOFs analysis, the CSEOFs analysis preferably exhibits the spatial distribution and temporal evolution characteristics and variability of Korean historical precipitation.

  • PDF

Model for the Spatial Time Series Data

  • Lim, Seongsik;Cho, Sinsup;Lee, Changsoo
    • 품질경영학회지
    • /
    • 제24권1호
    • /
    • pp.137-145
    • /
    • 1996
  • We propose a model which is useful for the analysis of the spatial time series data. The proposed model utilized the linear dependences across the spatial units as well as over time. Three stage model fitting procedures are suggested and the real data is analyzed.

  • PDF

시계열 모형을 활용한 사회서비스 수요·공급모형 구축 : 발달재활서비스를 중심으로 (Constructing Demand and Supply Forecasting Model of Social Service using Time Series Analysis : Focusing on the Development Rehabilitation Service)

  • 서정민
    • 한국콘텐츠학회논문지
    • /
    • 제15권6호
    • /
    • pp.399-410
    • /
    • 2015
  • 본 연구의 목적은 사회서비스 수요를 구성하는 이용자 수와 제공기관 수를 예측 할 수 있도록 시계열 모형을 활용하여 각각의 예측 값을 구성하고, 실제 관측된 값과의 차이를 확인하여 사회서비스분야에서 시계열 예측모형의 타당성을 검증하는 연구이다. 분석 자료는 한국보건복지정보개발원에서 발간한 사회서비스 제공기관 공급실태분석에서 제시된 발달재활서비스 이용 현황을 연구 목적에 따라 가공하여 이차 분석하였다. 분석결과 이용자 수는 ARIMA(1,1,0) 모형이, 제공기관 수는 ARIMA(0,1,1) 모형이 최적의 예측모형으로 제시되었다. 예측모형에 의한 예측 값은 관측 값과의 어느 정도 차이는 있었지만, 관측값은 예측값의 최대값과 최소값의 범위에 놓여 있었다. 따라서 사회서비스의 이용자를 활용한 수요예측과 제공기관을 활용한 공급예측의 모형구축에 대한 타당성은 가능할 수 있음을 확인할 수 있었다.

빅데이터 연구동향 분석: 토픽 모델링을 중심으로 (Research Trends Analysis of Big Data: Focused on the Topic Modeling)

  • 박종순;김창식
    • 디지털산업정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2019
  • The objective of this study is to examine the trends in big data. Research abstracts were extracted from 4,019 articles, published between 1995 and 2018, on Web of Science and were analyzed using topic modeling and time series analysis. The 20 single-term topics that appeared most frequently were as follows: model, technology, algorithm, problem, performance, network, framework, analytics, management, process, value, user, knowledge, dataset, resource, service, cloud, storage, business, and health. The 20 multi-term topics were as follows: sense technology architecture (T10), decision system (T18), classification algorithm (T03), data analytics (T17), system performance (T09), data science (T06), distribution method (T20), service dataset (T19), network communication (T05), customer & business (T16), cloud computing (T02), health care (T14), smart city (T11), patient & disease (T04), privacy & security (T08), research design (T01), social media (T12), student & education (T13), energy consumption (T07), supply chain management (T15). The time series data indicated that the 40 single-term topics and multi-term topics were hot topics. This study provides suggestions for future research.

경험적 모드분해법을 이용한 시계열 모형의 예측력 개선에 관한 연구 (A Study on the Predictive Power Improvement of Time Series Model with Empirical Mode Decomposition Method)

  • 김태림;신홍준;남우성;허준행
    • 한국수자원학회논문집
    • /
    • 제48권12호
    • /
    • pp.981-993
    • /
    • 2015
  • 수문 시계열의 분석은 수문자료를 활용한 수자원의 효율적인 운영 및 관리에 필수적인 부분이며, 특히 장기적인 수문량 예측에 널리 활용되고 있다. 이러한 수문 시계열 분석은 전통적으로 하나의 자료계열을 하나의 요인으로 파악하여 자료를 분석하고 예측해왔지만 시계열 자료가 여러 가지 요인으로 혼합되 어 하나의 자료계열로 나타내질 수 있다는 가정 하에 각 요인들을 분해하여 분석하는 방법도 널리 연구되고 있다. 본 연구에서는 경험적 모드분해법을 이용하여 주어진 수문 시계열을 다중 성분으로 분해하고 분해된 각 요소를 시계열 모형으로 재구축한 후, 구축된 요소별 시계열 모형으로부터 예측된 값을 합하여 시계열을 예측하는 방법을 이용하였으며 이를 국내 댐 유입량에 적용한 후 그 결과를 나타내었다. 기존 시계열 모형과 경험적 모드분해법을 이용한 방법의 정확도를 비교한 결과, 기존의 시계열 모형을 이용하여 자료를 예측한 결과보다 경험적 모드분해법을 적용하여 자료를 분해한 후 시계열 자료를 예측한 결과가 주어진 시계열 자료를 더 잘 나타내는 것을 알 수 있었다.