• Title/Summary/Keyword: Time Integration Method

Search Result 1,165, Processing Time 0.029 seconds

More reliable responses for time integration analyses

  • Soroushian, A.;Farjoodi, J.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.219-240
    • /
    • 2003
  • One of the most versatile approaches for analyzing the dynamic behavior of structural systems is direct time integration of semi-discrete equations of motion. However responses computed by time integration are generally inexact and hence the corresponding errors would rather be studied in advance. In spite of the various error estimation formulations that exist in the literature, it is accepted practice to repeat the analyses with smaller time steps, followed by a comparison between the results. In this paper, after a review of this simple method and disregarding the round-off errors, a more efficient, reliable and yet simple method for estimating errors and enhancing the accuracy is proposed. The main objectives of this research are more realistic error estimation based on the concept of convergence, approximately controlling the reliability by comparing the actual rate of convergence with the integration method's order of accuracy, and enhancement of reliability by applying Richardson's extrapolation. Starting from the errors at specific time instants, the study is then generalized to cases in which the errors should be estimated and decreased at specific events e.g. peak responses. Numerical study illustrates the efficacy of the proposed method.

Study on the parallel processing algorithms with implicit integration method for real-time vehicle simulator development (실시간 차량 시뮬레이터 개발을 위한 암시적 적분기법을 이용한 병렬처리 알고리즘에 관한 연구)

  • 박민영;이정근;배대성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.497-500
    • /
    • 1995
  • In this paper, a program for real time simulation of a vehicle is developed. The program uses relative coordinates and BEF(Backward Difference Formula) numerical integration method. Numerical tests showed that the proposed implicit method is more stable in carring out the numerical integration for vehicl dynamics than the explicit method. Hardware requirements for real time simulation are suggested. Algorithms of parallel processing is developed with DSP (digital signal processor).

  • PDF

Numerical assessment of step-by-step integration methods in the paradigm of real-time hybrid testing

  • Verma, Mohit;Rajasankar, J.;Iyer, Nagesh R.
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1325-1348
    • /
    • 2015
  • Real-time hybrid testing (RTHT) involves virtual splitting of the structure into two parts: physical substructure that contains the key region of interest which is tested in a laboratory and numerical substructure that contains the remaining part of the structure in the form of a numerical model. This paper numerically assesses four step-by-step integration methods (Central difference method (CDM), Operator splitting method (OSM), Rosenbrock based method (RBM) and CR-integration method (CR)) which are widely used in RTHT. The methods have been assessed in terms of stability and accuracy for various realistic damping ratios of the physical substructure. The stability is assessed in terms of the spectral radii of the amplification matrix while the accuracy in terms of numerical damping and period distortion. In order to evaluate the performance of the methods, five carefully chosen examples have been studied - undamped SDOF, damped SDOF, instantaneous softening, instantaneous hardening and hysteretic system. The performance of the methods is measured in terms of a non-dimensional error index for displacement and velocity. Based on the error indices, it is observed that OSM and RBM are robust and performs fairly well in all the cases. CDM performed well for undamped SDOF system. CR method can be used for the system showing softening behaviour. The error indices indicate that accuracy of OSM is more than other method in case of hysteretic system. The accuracy of the results obtained through time integration methods for different damping ratios of the physical substructure is addressed in the present study. In the presence of a number of integration methods, it is preferable to have criteria for the selection of the time integration scheme. As such criteria are not available presently, this paper attempts to fill this gap by numerically assessing the four commonly used step-by-step methods.

Parallel Integration for Real-Time Simulation (실시간 시뮬레이션을 위한 병렬적분)

  • Lee, W.S.;Samson, J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.106-115
    • /
    • 1994
  • A parallel integration approach is proposed for real-time simulation of controlled mechanical systems. The proposed approach, which employs the dual-rate integration method in a parallel computing environment, is developed to deal with stiffness and high frequency characteristics of the controlled mechanical systems effectively. Numerical experiments are performed to demonstrate the effectiveness of the approach in shared memory multiprocessors, Alliant FX/8 and Alliant FX/80.

  • PDF

Flexible Multibody Dynamic Analysis Using Multirate Integration Method (멀티레이트 수치적분법을 이용한 유연다물체 동역학해석)

  • Kim, Seong-Su;Kim, Bong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2804-2811
    • /
    • 2000
  • A Nordsick form opf the multirate integration scheme has been proposed for flexible multibody dynamic systems. It is assumed that vibrational modal coordinates in the equations of motion are treated as fast variables, whereas the relative joint coordinates are treated as slow variables. In the multirate integration, the fast variables are integrated with small step-size, and the slow variables are integrated with larger step-size. The proposed multirate integration method is based on the Adams-Bashforth-Moulton predictor-corrector method and implemented in the Nordsieck vector form. The Nordsieck form of multrate integration method provides effective step-size control and at the same time, inherits the efficiency from the Adams integration method. Simulations of a flexible gun and turret system of the military tank have been carried out to show the effectiveness and efficiency of the proposed method.

An explicit time-integration method for damped structural systems

  • Pezeshk, S.;Camp, C.V.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.145-162
    • /
    • 1995
  • A damped trapezoidal rule method for numerical time-integration is presented, and its application in analyses of dynamic response of damped structures is discussed. It is shown that the damped trapezoidal rule method has features that make it an attractive approach for applications in dynamic analyses of structures. Accuracy and stability analyses are developed for the damped single-degree-of-freedom systems. Error analyses are also performed for the Newmark beta method and compared with the damped trapezoidal rule method as a basis for discussion of the relative merits of the proposed method. The procedure is fully explicit and easy to implement. However, since the method is an explicit method, it is conditionally stable. The methodology is applied to several example problems to illustrate its strengths, limitations and inherent simplicity.

Study on the Time Increments in the Houblot Direct Integration Method (Houbolt 직접적분법의 시간증분에 관한 연구)

  • Son, Ju-Ri;Sin, Jung-Ho
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.55-66
    • /
    • 1988
  • Many direct integration methods are used for numerical analyses of dynamic motion. In these methods, the governing equations of a dynamic system are integrated successively using a step-by-step numerical integration procedure. Time derivatives in the equations are generally approximated using difference formulas involving one or more increments of the time. Time increment has closely relationship with the accuracy of the motion analysis. In this paper, a 4th order Houbolt direct integration method is derived. For a spring-mass system, the motion of the system are analyzed from the 3rd order Houbolt and the 4th order Houbolt approaches respectively. Finally the paper proposes the optimal time-increment based on the accuracy of numerical analyses.

  • PDF

An Initial Synchronization Method to Enhance Receive Sensitivity of the GPS Receiver for Reference Stations (기준국용 GPS 수신기의 수신감도 향상을 위한 초기동기 방법)

  • Park Sang-Hyun;Shin Jae-Ho;Park Jeong-Yeol
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.235-240
    • /
    • 2006
  • In order to enhance receive sensitivity in noisy environment, the previous initial synchronization method of GPS receiver for reference stations adopts not only the coherent integration method but also the non-coherent integration method. However, the previous GPS initial synchronization method causes the non-coherent integration loss, which is a dominant factor among the signal acquisition losses in noisy environment. And the non-coherent integration loss increases with the strength of noise signal. In this pa-per, a GPS initial synchronization method is proposed to enhance receive sensitivity of GPS receiver for reference stations in noisy environment. This paper presents that the proposed GPS initial synchronization method suppresses the non-coherent integration loss. Furthermore, with regard to the mean acquisition time, it is shown that the number of the search cells of the proposed GPS initial synchronization method is much fewer than that of the previous GPS initial synchronization method.

  • PDF

A virtual parameter to improve stability properties for an integration method

  • Chang, Shuenn-Yih
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.297-313
    • /
    • 2016
  • A virtual parameter is introduced into the formulation of the previously published integration method to improve its stability properties. It seems that the numerical properties of this integration method are almost unaffected by this parameter except for the stability property. As a result, it can have second order accuracy, explicit formulation and controllable numerical dissipation in addition to the enhanced stability property. In fact, it can have unconditional stability for the system with the instantaneous degree of nonlinearity less than or equal to the specified value of the virtual parameter for the modes of interest for each time step.

Explicit integration algorithm for fully flexible unit cell simulation with recursive thermostat chains (순환적으로 결합되는 정온기들을 갖는 $N{\sigma}T$ 분자동역학 전산모사에 적용한 외연적 적분기법)

  • Jung, Kwang-Sub;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.512-517
    • /
    • 2007
  • In the previous development of the recursive thermostat chained fully flexible cell molecular dynamics simulation, implicit time integration method such as generalized leapfrog integration is used. The implicit algorithm is very much complicated and not easy to show time reversibility because it is solved by the nonlinear iterative procedure. Thus we develop simple, explicit symplectic time integration formula for the recursive thermostat chained fully flexible unit cell simulation. Uniaxial tension test is performed to verify the present explicit algorithm. We check that the present simulation satisfies the ergodic hypothesis for various values of fictitious mass and coefficient of multiple thermostat system. The proposed method should be helpful to predict mechanical and thermal behavior of nano-scale structure.

  • PDF