• Title/Summary/Keyword: Time Domain Response

검색결과 826건 처리시간 0.026초

사용중 시간영역응답을 이용한 손상탐지이론의 검증 (Verification of Damage Detection Using In-Service Time Domain Response)

  • 최상현;김대혁;박남회
    • 한국방재학회 논문집
    • /
    • 제9권5호
    • /
    • pp.9-13
    • /
    • 2009
  • 현재까지 구조건전성 모니터링과 관련하여 제안된 대부분의 손상인식기법은 모달영역응답을 이용하고 있으나, 모달영역응답은 별도의 후처리가 필요하며 추출과정에서 오차를 포함하게 되므로 손상인식의 정확성을 저하시키는 요인이 되어왔다. 본 논문에서는 이동하중응답을 직접 이용하는 손상인식기법의 적용성을 실내 실험을 통하여 검증하였다. 실험은 강재로 만든 보에 이동하중을 재하시켜 수행하였으며, 보의 응답은 변위계를 이용하여 측정하였다. 이동하중은 쇠구슬과 활강장치를 이용하여 모사하였으며, 주기성과 비주기성 이동하중으로 구분하여 재하하였다. 계측된 응답을 이용한 손상인식 결과, 이동하중을 이용한 손상인식기법은 구조물의 손상을 성공적으로 탐지하는 것으로 나타났다.

결합 적분방정식을 이용한 삼차원 임의형태 도체 구조물의 전자파 지연산란 해석 (Analysis of Transient Scattering from Arbitrarily Shaped Three-Dimensional Conducting Objects Using Combined Field Integral Equation)

  • 정백호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권11호
    • /
    • pp.551-558
    • /
    • 2002
  • A time-domain combined field integral equation (CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time-domain electric field integral equation (EFIE) with the magnetic field integral equation (MFIE). The time derivative of the magnetic vector potential in EFIE is approximated using a central finite difference approximation and the scalar potential is averaged over time. The time-domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. The incident spectrum of the field may contain frequency components, which correspond to the internal resonance of the structure. For the numerical solution, we consider both the explicit and implicit scheme and use two different kinds of Gaussian pulses, which may contain frequencies corresponding to the internal resonance. Numerical results for the EFIE, MFIE, and CFIE are presented and compared with those obtained from the inverse discrete Fourier transform (IDFT) of the frequency-domain CFIE solution.

Comparative analysis of fatigue assessment considering hydroelastic response using numerical and experimental approach

  • Kim, Beom-il;Jung, Byung-hoon
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.355-365
    • /
    • 2020
  • In this study, considering the hydroelastic response represented by the springing and whipping phenomena, we propose a method of estimating the fatigue damage in the longitudinal connections of ships. First, we screened the design sea states using a load transfer function based on the frequency domain. We then conducted a time domain fluid-structure interaction (FSI) analysis using WISH-FLEX, an in-house code based on the weakly nonlinear approach. To obtain an effective and robust analytical result of the hydroelastic response, we also conducted an experimental model test with a 1/50-scale backbone-based model of a ship, and compared the experimental results with those obtained from the FSI analysis. Then, by combining the results obtained from the hydroelastic response with those obtained from the numerical fatigue analysis, we developed a fatigue damage estimation method. Finally, to demonstrate the effectiveness of the developed method, we evaluated the fatigue strength for the longitudinal connections of the real ship and compared it with the results obtained from the model tests.

다용도 차량의 선형 모델을 이용한 직진 안전성 및 주파수 응답해석 (Stability and frequency response analysis of multipurpose vehicle using linear vehicle model)

  • 김병기;임원식
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.124-129
    • /
    • 1997
  • The purpose of this study is to predict the stability and frequency response of multipurpose vehicle. The vehicle model has seven degrees of freedom. The motion equations are derived by using Lagrangian equation and linearized. The positions of eigenvalues of model which are dominated by lateral velocity, yaw rate, roll rate of sprung mass are used to predict the stability of motion. The resonse of sprung mass to steering wheel is simulated in time domain. It is predicted that the roll response of sprung mass would rather be improved by modifying the position of eigenvalues. The responses of sprung mass to steering wheel are also simulated in frequency domain. The magnitude and phase plots of gains are evaluated in driver's steering input frequency range.

  • PDF

Novel Driving Method for fast Response Time in Vertical Alignment LCDs

  • Song, Jang-Kun;Jun, Man-Bok;Park, Bo-Yoon;Seomun, San-Seong;Lee, Kye-Hun;Choi, Kwang-Soo;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.205-208
    • /
    • 2004
  • The switching mechanism of multi-domain vertical alignment mode LCD and delayed on response time phenomenon in special conditions are investigated. A modified DCC (Dynamic Capacitance Compensation), DCCII has been developed for the fast response time performance in PVA TFT-LCD TVs. DCCII applies a pre-tilt voltage to addressed pixels during the previous frame in addition to an overshoot voltage. In result, the response time less than 8 msec, has been obtained for all moving images through the DCCII technique.

  • PDF

지반-구조물 상호작용의 시간영역 해석을 위한 무한경계요소 (Infinite Boundary Elements for Soil-Structure Interaction Analysis in Time Domain)

  • 윤정방;최준성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.137-144
    • /
    • 1994
  • In this study, a new procedure for solving 2-D dynamic problems of semi-infinite medium in time domain by boundary element method (BEM) is presented. Efficient modelling of the far field region, infinite boundary elements are introduced. The shape function of the infinite boundary element is a combination of decay functions and Laguerre functions. Though the present shape functions have been developed for the time domain analysis, they may be also applicable to the frequency domain analysis. Through the response analysis in a 2-D half space under a uniformly distributed dynamic load, it has been found that an excellent accuracy can be achieved compared with the analytical solution

  • PDF

Comparing of the effects of scaled and real earthquake records on structural response

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • 제6권4호
    • /
    • pp.375-392
    • /
    • 2014
  • Time history analyses have been preferred commonly in earthquake engineering area to determine earthquake performances of structures in recent years. Advances in computer technology and structural analysis have led to common usage of time history analyses. Eurocode 8 allows the use of real earthquake records as an input for linear and nonlinear time history analyses of structures. However, real earthquake records with the desired characteristics sometimes may not be found, for example depending on soil classes, in this case artificial and synthetic earthquake records can be used for seismic analyses rather than real records. Selected earthquake records should be scaled to a code design spectrum to reduce record to record variability in structural responses of considered structures. So, scaling of earthquake records is one of the most important procedures of time history analyses. In this paper, four real earthquake records are scaled to Eurocode 8 design spectrums by using SESCAP (Selection and Scaling Program) based on time domain scaling method and developed by using MATLAB, GUI software, and then scaled and real earthquake records are used for linear time history analyses of a six-storied building. This building is modeled as spatial by SAP2000 software. The objectives of this study are to put basic procedures and criteria of selecting and scaling earthquake records in a nutshell, and to compare the effects of scaled earthquake records on structural response with the effects of real earthquake records on structural response in terms of record to record variability of structural response. Seismic analysis results of building show that record to record variability of structural response caused by scaled earthquake records are fewer than ones caused by real earthquake records.

댐의 내진설계시 해석방법과 그 적용성 평가 (Evaluation of the Application and Analysis Method at Seismic Design of Dam)

  • 황성춘
    • 한국산학기술학회논문지
    • /
    • 제12권9호
    • /
    • pp.4239-4249
    • /
    • 2011
  • 일본과 같은 지진 빈발국은 CFRD의 경우 지진시 댐제체 상류부의 Face Slab에 응력이 집중하여 파괴되는 경우를 대부분 상정하여 내진안정성을 평가한다. 그러나 우리나라에서는 현재까지 이에 대한 명확한 해석방법이 확립되어 있지 않다. 본 논문은 CFRD에 대하여 등가정적해석 및 동적해석 수행 후 진동대시험과 비교하여 그 신뢰성을 평가하였다. 등가정적해석은 진도법, 수정진도법, Newmark법을 적용하였고 동적해석은 주파수응답해석, 시간이력 해석법을 적용하였다. 해석결과 해석 방법별 편차는 발생하나 가속도 및 변위의 발생경향은 진동대시험 결과와 잘 일치하였다.

복합 관수로에서 인버스 임피던스 확장연구 (Extended inverse impedance method for multiple branches or loops pipeline systems)

  • 고동원;김상현
    • 상하수도학회지
    • /
    • 제37권6호
    • /
    • pp.437-446
    • /
    • 2023
  • We propose a transient evaluation scheme using a pressure measurement in a complicate pipeline systems. Conservation of mass and momentum equations in time domain can be transformed into a pressure head and flowrate relationship between upstream and downstream point in frequency domain. The impedance formulations were derived to address measured pressure at downstream to evaluate of flowrate or pressure head at any point of system. Both branched pipeline element and looped pipeline element can be generally addressed in the platform of the basic reservoir pipeline valve system. The convolution of time domain response function with measured pressure head from a downstream point provides flowrate or pressure head response in any point of the designated pipeline system. The proposed method was validated through comparison between traditional method of characteristics and the proposed method in several hypothetical systems.

A computer based simulation model for the fatigue damage assessment of deep water marine riser

  • Pallana, Chirag A.;Sharma, Rajiv
    • Ocean Systems Engineering
    • /
    • 제12권1호
    • /
    • pp.87-142
    • /
    • 2022
  • An analysis for the computation of Fatigue Damage Index (FDI) under the effects of the various combination of the ocean loads like random waves, current, platform motion and VIV (Vortex Induced Vibration) for a certain design water depth is a critically important part of the analysis and design of the marine riser platform integrated system. Herein, a 'Computer Simulation Model (CSM)' is developed to combine the advantages of the frequency domain and time domain. A case study considering a steel catenary riser operating in 1000 m water depth has been conducted with semi-submersible. The riser is subjected to extreme environmental conditions and static and dynamic response analyses are performed and the Response Amplitude Operators (RAOs) of the offshore platform are computed with the frequency domain solution. Later the frequency domain results are integrated with time domain analysis system for the dynamic analysis in time domain. After that an extensive post processing is done to compute the FDI of the marine riser. In the present paper importance is given to the nature of the current profile and the VIV. At the end we have reported the detail results of the FDI comparison with VIV and without VIV under the linear current velocity and the FDI comparison with linear and power law current velocity with and without VIV. We have also reported the design recommendations for the marine riser in the regions where the higher fatigue damage is observed and the proposed CSM is implemented in industrially used standard soft solution systems (i.e., OrcaFlex*TM and Ansys AQWA**TM), Ms-Excel***TM, and C++ programming language using its object oriented features.