• Title/Summary/Keyword: Time Domain Numerical Simulation

Search Result 258, Processing Time 0.022 seconds

Earthquake stresses and effective damping in concrete gravity dams

  • Akpinar, Ugur;Binici, Baris;Arici, Yalin
    • Earthquakes and Structures
    • /
    • v.6 no.3
    • /
    • pp.251-266
    • /
    • 2014
  • Dynamic analyses for a suite of ground of motions were conducted on concrete gravity dam sections to examine the earthquake induced stresses and effective damping. For this purpose, frequency domain methods that rigorously incorporate dam-reservoir-foundation interaction and time domain methods with approximate hydrodynamic foundation interaction effects were employed. The maximum principal tensile stresses and their distribution at the dam base, which are important parameters for concrete dam design, were obtained using the frequency domain approach. Prediction equations were proposed for these stresses and their distribution at the dam base. Comparisons of the stress results obtained using frequency and time domain methods revealed that the dam height and ratio of modulus of elasticity of foundation rock to concrete are significant parameters that may influence earthquake induced stresses. A new effective damping prediction equation was proposed in order to estimate earthquake stresses accurately with the approximate time domain approach.

Numerical modeling and simulation technique in time-domain for multibeam echo sounder

  • Jung, Donghwan;Kim, Jeasoo;Byun, Gihoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.225-234
    • /
    • 2018
  • A Multibeam Echo Sounder (MBES) is commonly used for rapid seafloor mapping. We herein present a time-domain integrated system simulation technique for MBES development. The Modeling and Simulation (M&S) modules consist of four parts: sensor array signal transmission, propagation and backscattering modeling in the ocean environment, beamforming of the received signals, and image processing. Also, the simulation employs a ray-theory-based algorithm to correct the reconstructed bathymetry, which has errors due to the refraction caused by the vertical sound velocity profile. The developed M&S technique enables design parameter verification and system parameter optimization for MBES. The framework of this technique can also be potentially used to characterize the seabed properties. Finally, typical seafloor images are presented and discussed.

Ice forces acting on towed ship in level ice with straight drift. Part II: Numerical simulation

  • Zhou, Li;Chuang, Zhenju;Bai, Xu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.119-128
    • /
    • 2018
  • A numerical method is proposed to simulate level ice interaction with ship in transverse and longitudinal directions in time domain. A novel method is proposed to simulate non-symmetric transverse force in a stochastic way. On the basis of observations from the model tests, the simulation of longitudinal force combines the ice bending force acting on the waterline, submersion force below the waterline and ice friction forces caused by transverse force and ice floes rotation amidships. In the simulations the ship was fixed and towed through an intact ice sheet at a certain speed. The setup of the numerical simulation is similar to the ice tank setup as much as possible. The simulated results are compared with model tests data and the results show good agreement with the measurement.

Eigenvalue Sensitivity Analysis of Discrete Power Systems Including Generator Controllers and TCSC (발전기 제어장치와 TCSC를 포함하는 이산 전력시스템의 고유치 감도해석)

  • Kim, Deok-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.193-200
    • /
    • 2010
  • In this paper, the eigenvalue sensitivity analysis is calculated in the power system which is including both generator controllers such as Exciter, PSS and thyristor controlled FACTS devices in transmission lines such as TCSC. Exciter and PSS are continuously operating controllers but TCSC has a switching device which operates non-continuously. To analyze both continuous and non-continuous operating equipments, the RCF method one of the numerical analysis method in discrete time domain is applied using discrete models of the power system. Also the eigenvalue sensitivity calculation algorithm using state transition equations in discrete time domain is devised and applied to a sampled system. As a result of simulation, the eigenvalue sensitivity coefficients calculated using discrete system models in discrete time domain are changed periodically and showed different values compared to those of continuous system model in time domain by the effect of periodic switching operations of TCSC.

Nonlinear Response Analyses for a Barge-Mounted Plant with Dolphin Mooring Systems in Irregular Waves (불규칙파 중에서 돌핀 계류된 바아지식 해상공장에 대한 비선형 응답 해석)

  • 이호영;신현경;염재선
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 2000
  • The time simulation of motion responses of dolphin-moored BMP in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and solved in time domain by using the Newmark $\beta$ method. The hydrodynamic coefficient and first order wave exciting forces involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The second order wave drift forces and mooring for dolphin system are taken into account. As for numerical example, time domain analysis are carried out for a BMP in irregular wave condition.

  • PDF

A Study on the Numerical Wave Propagation Properties of the Finite Difference-Time Domain(FD-TD) Method for EM Wave Problems (전자파 문제에 대한 시간영역-유한차분법의 수치파 전파모델의 성질에 관한 연구)

  • 김인석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1595-1611
    • /
    • 1994
  • In this paper, the numerical wave propagation properties of the finite difference-time domain(FD-TD) method is investigated as a discrete model describing electromagnetic(EM) wave propagation phenomena. The leap-frog approximation of Maxwell's curl equations in time-space simulates EM wave propagation in terms of the numerical characteristic and the domain of dependence. A geometrical interpretation of the FD-TD numerical procedure is presented. The numerical dispersion error due to the leap-frog approximation and its dependence on the stability factor are illustrated. The FD-TD method using the leap-frog approximation is inherently a descriptive model. Thus, not only any physical picture about EM wave propagation phenomena can be drawn through this model, but also physical or engineering parameters in the frequency domain can be extracted from descriptive results. E-plane filter characteristics in the WR-28 rectangular waveguide and reflection property of an inductive iris in the WR-90 rectangluar waveguide extracted from simulation of the FD-TD model is included.

  • PDF

Solution verification procedures for modeling and simulation of fully coupled porous media: static and dynamic behavior

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.67-98
    • /
    • 2015
  • Numerical prediction of dynamic behavior of fully coupled saturated porous media is of great importance in many engineering problems. Specifically, static and dynamic response of soils - porous media with pores filled with fluid, such as air, water, etc. - can only be modeled properly using fully coupled approaches. Modeling and simulation of static and dynamic behavior of soils require significant Verification and Validation (V&V) procedures in order to build credibility and increase confidence in numerical results. By definition, Verification is essentially a mathematics issue and it provides evidence that the model is solved correctly, while Validation, being a physics issue, provides evidence that the right model is solved. This paper focuses on Verification procedure for fully coupled modeling and simulation of porous media. Therefore, a complete Solution Verification suite has been developed consisting of analytical solutions for both static and dynamic problems of porous media, in time domain. Verification for fully coupled modeling and simulation of porous media has been performed through comparison of the numerical solutions with the analytical ones. Modeling and simulation is based on the so called, u-p-U formulation. Of particular interest are numerical dispersion effects which determine the level of numerical accuracy. These effects are investigated in detail, in an effort to suggest a compromise between numerical error and computational cost.

Time domain simulation for icebreaking and turning capability of bow-first icebreaking models in level ice

  • Ko, Donghyeong;Park, Kyung-Duk;Ahn, Kyoungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.228-234
    • /
    • 2016
  • Recent icebreaking ships need to be designed to enhance not only icebreaking capability but also turning ability. For the evaluation of ice resistance induced by an icebreaking hull form, HHI (Hyundai Heavy Industries) has developed the hybrid empirical formulas (Park et al., 2015) by considering the geometrical hull shape features, such as waterline and underwater sections. However, the empirical formulas have inherent limits to the precise estimation of the icebreaking and turning ability because the breaking process and the resulting pattern are ignored. For this reason, numerical calculation in time domain is performed to predict the icebreaking process and pattern. In the simulation, varying crushing stress according to velocity vectors and contact areas between hull and ice is newly introduced. Moreover, the simulation results were verified by comparing them with the model test results for three different bow-first icebreaking models.

Accurate Simulation of a Shallow-etched Grating Antenna on Silicon-on-insulator for Optical Phased Array Using Finite-difference Time-domain Methods

  • Seo, Dong-Ju;Ryu, Han-Youl
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.522-530
    • /
    • 2019
  • We present simulation methods to accurately determine the transmission efficiency and far-field patterns (FFPs) of a shallow-etched waveguide grating antenna (WGA) formed on a silicon-on-insulator wafer based on the finite-difference time-domain (FDTD) approach. The directionality and the FFP of a WGA with >1-mm in length can be obtained reliably by simulating a truncated WGA structure using a three-dimensional FDTD method and a full-scale WGA using a two-dimensional FDTD with the effective index method. The developed FDTD methods are applied to the simulation of an optical phased array (OPA) composed of a uniformly spaced WGA array, and the steering-angle dependent transmission efficiency and FFPs are obtained in OPA structures having up to 128-channel WGAs.

Scattering characteristic analysis of Fresnel zone plate lens using TLM (TLM법을 이용한 프레넬 존 플레이트 렌즈 산란특성 해석)

  • 김태용
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.15-18
    • /
    • 2003
  • Most numerical techniques such as FEM, BEM, and MOM are able to analize electromagnetic scattering problems from arbitrary shapes. Although these methods could be applied to compute electromagnetic scattering problems in frequency domain, it was limited for electrodynamic problem in time domain. In this paper, electromagnetic scattering problem from Fresnel zone plate lens are considered. Some numerical results computed by TLM are compared with Kirchhoff's approximation and PO method.

  • PDF