• Title/Summary/Keyword: Time Domain Noise

Search Result 593, Processing Time 0.029 seconds

Direct Time-domain Phase Correction of Dual-comb Interferograms for Comb-resolved Spectroscopy

  • Lee, Joohyung
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.289-297
    • /
    • 2021
  • We describe a comb-mode resolving spectroscopic technique by direct time-domain phase correction of unstable interferograms obtained from loosely locked two femtosecond lasers. A low-cost continuous wave laser and conventional repetition rate stabilization method were exploited for locking carrier and envelope phase of interferograms, respectively. We intentionally set the servo control at low bandwidth, resulting in severe interferograms' fluctuation to demonstrate the capability of the proposed correction method. The envelope phase of each interferogram was estimated by a quadratic fit of carrier peaks to correct timing fluctuation of interferograms in the time domain. After envelope phase correction on individual interferograms, we successfully demonstrated 1 Hz linewidth of RF comb-mode over 200 GHz optical spectral-bandwidth with 10-times signal-to-noise ratio (SNR) enhancement compared to the spectrum without correction. Besides, the group delay difference between two femtosecond pulses is successfully estimated through a linear slope of phase information.

Complex envelope of sound field and its application (음장의 복소 포락과 응용)

  • Park, Choon-Su;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.502-505
    • /
    • 2006
  • Acoustic holography allows us to predict spatial pressure distribution on any surface of interest from measured hologram. It is noteworthy that the data size is so huge that it takes long time to calculate pressure field. Moreover the reconstructed pressure field is frequently too complicated to get what we want to know. One possible candidate is complex envelope. Complex envelope in time domain is well known and widely used in various engineering field. We have attempted to extend this method to space domain, so that we can have rather simple spatial pressure picture that provides information we need, for example, where sound sources are. First we start with the simplest case. We examine the complex envelope of a plane wave on both space and wave number domain. Then we extend to monopole case. Holographic reconstructed sound field on the monopole is processed according to what we propose. We demonstrate how this method provides better picture for analyzing the sound field.

  • PDF

Multiple Faults Diagnosis in Induction Motors Using Two-Dimension Representation of Vibration Signals (진동 신호의 2차원 변환을 통한 유도 전동기 다중 결함 진단)

  • Jeong, In-Kyu;Kang, Myeongsu;Jang, Won-Chul;Kim, Jong-Myon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.338-345
    • /
    • 2013
  • Induction motors play an increasing importance in industrial manufacturing. Therefore, the state monitoring systems also have been considering as the key in dealing with their negative effect by absorbing faulty symptoms in motors. There are numerous proposed systems in literature, in which, several kinds of signals are utilized as the input. To solve the multiple faults problem of induction motors, like the proposed system, the vibration signals is good candidate. In this study, a new signal processing scheme was utilized, which transforms the time domain vibration signal into the spatial domain as an image. Then the spatial features of converted image then have been extracted by applying the dominant neighbourhood structure (DNS) algorithm. In addition, these feature vectors were evaluated to obtain the fruitful dimensions, which support to discriminate between states of motors. Because of reliability, the conventional one-against-all (OAA) multi-class support vector machines (MCSVM) have been utilized in the proposed system as classifier module. Even though examined in severity levels of signal-to-noise ratio (SNR), up to 15dB, the proposed system still reliable in term of two criteria: true positive (TF) and false positive (FP). Furthermore, it also offers better performance than five state-of-the-art systems.

  • PDF

Development of Hybrid Methods for the Prediction of Internal Flow-Induced Noise and Its Application to Throttle Valve Noise in an Automotive Engine (내부공력소음해석기법의 개발과 자동차용 엔진 흡기 시스템의 기류음 예측을 위한 적용)

  • 정철웅;김성태;김재헌;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.78-83
    • /
    • 2003
  • General algorithm is developed for the prediction of internal flow-induced noise. This algorithm is based on the integral formula derived by using the General Green Function, Lighthills acoustic analogy and Curls extension of Lighthills. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve are compared with actual measurements. This illustrative computation shows that the current method permits generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.

  • PDF

Development of internal inflow/outflow steady mean flow boundary condition using Perfectly Matched Layer for the prediction of turbulence-cascade interaction noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer 을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.521-526
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study(1) showed that Perfectly Matched Layer (PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

  • PDF

Development of Internal Inflow/outflow Steady Mean Flow Boundary Condition Using Perfectly Matched Layer for the Prediction of Turbulence-cascade Interaction Noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.685-691
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study showed that perfectly matched layer(PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

Time-Domain Based Asynchronous IR-UWB Ranging System (시간 영역 기반의 비동기 IR-UWB 거리추정 시스템)

  • Kim, Hyeong-Rae;Yang, Hoon-Gee;Yang, Seong-Hyeon;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.347-354
    • /
    • 2011
  • This paper presents a time-domain based asynchronous IR-UWB ranging system. This system accomplishes the ranging by detecting peaks from the outputs of a correlator implemented by a FIR filter. To discriminate the peaks due to a signal component, we use windowing for the correlated data within which the data are sorted in amplitude-ascending order and the noise level is calculated. Comparing with the recently presented frequency-domain based ranging system, we show the system structure and explain how it operates for ranging. Moreover, through the simulations, the proposed system is compared with the frequency-domain based system in terms of performance.

Tailpipe Noise Prediction of an Accelerating Vehicle (가속주행하는 차량의 배기 토출 소음 예측)

  • Kim Bong-Ki
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.291-294
    • /
    • 2000
  • Analysis of the contribution of each pass-by noise source to the overall pass-by noise is an important issue for reduction of pass-by noise. A technical approach for predicting tailpipe noise is used to identify the contribution of tailpipe noise to the pass-by noise in this study. Simulation program with a time domain engine modeling program called 'WAVE' and wave propagation theory of moving noise source are employed. Since the Doppler phenomenon causes a frequency shift during a pass-by noise test, the Doppler correction and time delay effects are incorporated into the estimation of tailpipe noise. The developed program can furnish an in-depth understanding of the effect of tailpipe to pass-by noise.

  • PDF

A Study on Noise Reduction Method using Wavelet Approximation Coefficient-based Distribution Characteristics (웨이브렛 근사계수 기반의 분포특성을 이용한 잡음 제거 방법에 관한 연구)

  • Bae, Sang-Bum;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.513-520
    • /
    • 2010
  • The degradation phenomenon caused by noises significantly corrupts digitalized data. Therefore, a variety of methods to preserve the edge component of signals and remove noise simultaneously have been used in time domain and frequency domain. In this paper, we have proposed a new noise reduction algorithm using wavelet approximation coefficients to reduce the mixed noise overlapping the signal. The proposed algorithm adopts the distribution characteristics of the error function which is obtained by accumulating the wavelet approximation coefficients, in order to improve the capability to separate edges of the signal and noises.

Quantitative nondestructive evaluation of thin plate structures using the complete frequency information from impact testing

  • Lee, Sang-Youl;Rus, Guillermo;Park, Tae-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.525-548
    • /
    • 2008
  • This article deals the theory for solving an inverse problem of plate structures using the frequency-domain information instead of classical time-domain delays or free vibration eigenmodes or eigenvalues. A reduced set of output parameters characterizing the defect is used as a regularization technique to drastically overcome noise problems that appear in imaging techniques. A deconvolution scheme from an undamaged specimen overrides uncertainties about the input signal and other coherent noises. This approach provides the advantage that it is not necessary to visually identify the portion of the signal that contains the information about the defect. The theoretical model for Quantitative nondestructive evaluation, the relationship between the real and ideal models, the finite element method (FEM) for the forward problem, and inverse procedure for detecting the defects are developed. The theoretical formulation is experimentally verified using dynamic responses of a steel plate under impact loading at several points. The signal synthesized by FEM, the residual, and its components are analyzed for different choices of time window. The noise effects are taken into account in the inversion strategy by designing a filter for the cost functional to be minimized. The technique is focused toward a exible and rapid inspection of large areas, by recovering the position of the defect by means of a single accelerometer, overriding experimental calibration, and using a reduced number of impact events.