• 제목/요약/키워드: Tilting Car

검색결과 54건 처리시간 0.025초

계측장치를 이용한 틸팅열차 보조전원장치 특성 연구 (A Study on TTX SIV Characteristic Using Measurement System)

  • 한영재;이수길;박춘수;한성호;정권일;이영호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.178-180
    • /
    • 2008
  • With the increase in population, the area of human activities has expanded, resulting in the dramatic increase in the need for transportation system. Tilting trains are currently in operation in 13 countries around the world. TTX(Tilting Train express) has been developed by KRRI(Korea Railroad Research Institute) for last 6 years to satisfy the need. This train developed in this Project is designed for a design speed of 200km/h and a maximum operating speed of 180km/h. We developed a measurement system for on-line test. the measurement console desk is mounted on T car, which is designed as the DAQ system train. It is comprehensive of the industrial computers, LCD monitors, communication cards and the communication channel measurement system. Using this system, SIV performance evaluation was conducted.

  • PDF

강한 측풍에 대한 한국형 고속 틸팅 열차의 안전성 고찰 (Investigation on the Safety of TTX in Strong Cross wind)

  • 김덕영;윤수환;하종수;노주현;권혁빈;고태환;이동호
    • 한국철도학회논문집
    • /
    • 제10권3호
    • /
    • pp.271-277
    • /
    • 2007
  • The Korean Tilting Train eXpress (TTX) development program is in progress for the purpose of running speed or passenger's comfort improvement at the curved track. However, the speed up and light weight of train make poor the dynamic safety of the TTX in strong cross wind. In this paper, 3-dimensional numerical analysis on the flow field around the TTX under strong cross wind is performed for each operating condition, such as the train speed, cross wind speed, tilting/nontilting condition, and so on. Due to the strong cross wind, the pressure distribution around the train becomes asymmetric, especially at the leading car. Asymmetrical pressure distribution causes the side force and strong unstability. The side force on the train is proportional to the train speed and cross wind speed. Based on the numerical results, the overturning coefficients are predicted for investigation of the train stability, and all of them are less than the critical value, 0.9. The results in this study would be a good data for providing importance to judgement of cross wind safety of TTX.

운영실적을 이용한 철도전철화에 따른 에너지 절감효과 분석 (A study on energy saving effectiveness of railway electrification using operation data)

  • 정호성;장동욱;권삼영;한문섭;김진환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.899-904
    • /
    • 2007
  • Improvement projects has been progressed for railway electrification and double track line in the conventional line as well as high speed line for the high speed and large transportation capability of railway. Especially, many variable operation plans are possible such as interaction between high speed line and conventional line and operation of tilting train due to the electrification of the conventional line. Railway electrification is more energy efficient and environmentally-friendly, but it has some problems such as an enormous initial construction and maintenance costs and electrical accidents. Therefore, the more intensive research will be progressed about railway electrification effectiveness for the continuous electrification project. So, we analyzed railway electrification effectiveness about the energy side using annual operation data of electric car and diesel car. The energy side was divided into energy costs and national energy consumption for analyzing electrification effectiveness about entire line and specific line. We verified advantage of energy costs and national energy consumption in this paper and this result will contribute to the progress of the continuous electrification project and the more efficient operation ways in electrification line

  • PDF

곡선부에서의 한빛 200 열차 차륜방사 소음 특성 (Experimental Analysis of Wheel Radiation Noise of HANVIT 200 Train in Curve Lines)

  • 이찬우;김재철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.907-910
    • /
    • 2008
  • The wheel radiation noise characteristic of Korean tilting train(Hanvit 200) on curved rail under the field test conditions is analyzed in this paper. The test railroad track was selected from Seodaejon to Songjeongri in Honam line. $5^{th}$ and $6^{th}$ car are decided to measure radiation noise level among a train of six cars. The test subject curve radius executed from R400, R500, R600, R700 and R800 segments. The speed of test trains when from R600 and R800 curves existing operation speed and speed up 20% of existing speed. On curved rail at the time of operation speed of Hanvit 200 trains from below 95km/h wheel radiation noise level at $94dBA{\sim}99dBA$, the operation speed from between $100km/h{\sim}144km/h$ wheel radiation noise level at $100dBA{\sim}106dBA$.

  • PDF

철도차량용 알루미늄 압출 패널의 마찰교반용접 특성에 관한 연구 (A Study on Friction stir welding Properties of Extruded Aluminum Panels for Rolling Stock)

  • 박영빈;구병춘;구정서
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2053-2058
    • /
    • 2008
  • Extruded aluminium panels have been widely used for railway vehicle structures because of their light specific weight and other merit. In the past, GMAW (Gas Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) were mainly used to join aluminium panels. But recently friction stir welding (FSW) is widely used. due to its lots of advantage. In this study aluminium A6005-T6 which are used for car body structures was chosen. The influence of main parameters such as : pin rotating speed, welding speed, shoulder diameter, pin length and tilting angle on mechanical properties was examined. Optical microscope observation, micro hardness test and tensile test were carried out. Tensile strength of the stir welded plates is 74% of that of the base material.

  • PDF

틸팅 차량용 차체의 하이브리드 복합재 접합체결부의 내구성 평가 (Fatigue Assessment of Hybrid Composite Joint for the Tilting Car Body)

  • 정달우;최낙삼;김정석;서승일;조세현
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2006년도 학술발표대회 논문집
    • /
    • pp.357-361
    • /
    • 2006
  • Fatigue fracture behavior of a hybrid joint part with bolting was evaluated in comparison to the case of static fracture. Hybrid joint part specimens for bending test were made with layers of CFRP and aluminum honeycomb. Characteristic fracture behaviors of those specimens were obviously different under static and cyclic loads. Static bending load showed the shear deformation at the honeycomb core, whereas cyclic bending load caused the delamination between CFRP skin layers and honeycomb core. Experimental results obtained by static and fatigue tests were considered in modifications of design parameters of the hybrid joint.

  • PDF

한빛 200 열차의 실내 소음 특성 분석 (Analysis and evalution of interior noise for Hanvit-200 train)

  • 이찬우;김재철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1766-1769
    • /
    • 2008
  • INnterior noise characteristic of Korean tilting train(Hanvit 200) under the field test conditions is analyzed in this paper. The test railroad track was selected from Seodaejon to Songjeongri in Honam line. $4^{th}$ and $5^{th}$ car are decided to measure interior noise level among a train of six cars. The test subject open field executed from test sections. The speed of test trains when from existing operation speed and speed up 20% of existing speed. On open field at the time of operation speed of Hanvit 200 trains from below 160km/h interior noise level at $68dBA{\sim}70dBA$.

  • PDF

Investigation of effects of twin excavations effects on stability of a 20-storey building in sand: 3D finite element approach

  • Hemu Karira;Dildar Ali Mangnejo;Aneel Kumar;Tauha Hussain Ali;Syed Naveed Raza Shah
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.427-443
    • /
    • 2023
  • Across the globe, rapid urbanization demands the construction of basements for car parking and sub way station within the vicinity of high-rise buildings supported on piled raft foundations. As a consequence, ground movements caused by such excavations could interfere with the serviceability of the building and the piled raft as well. Hence, the prediction of the building responses to the adjacent excavations is of utmost importance. This study used three-dimensional numerical modelling to capture the effects of twin excavations (final depth of each excavation, He=24 m) on a 20-storey building resting on (4×4) piled raft. Because the considered structure, pile foundation, and soil deposit are three-dimensional in nature, the adopted three-dimensional numerical modelling can provide a more realistic simulation to capture responses of the system. The hypoplastic constitutive model was used to capture soil behaviour. The concrete damaged plasticity (CDP) model was used to capture the cracking behaviour in the concrete beams, columns and piles. The computed results revealed that the first excavation- induced substantial differential settlement (i.e., tilting) in the adjacent high-rise building while second excavation caused the building tilt back with smaller rate. As a result, the building remains tilted towards the first excavation with final value of tilting of 0.28%. Consequently, the most severe tensile cracking damage at the bottom of two middle columns. At the end of twin excavations, the building load resisted by the raft reduced to half of that the load before the excavations. The reduced load transferred to the piles resulting in increment of the axial load along the entire length of piles.

마찰 교반 용접된 철도 차량용 A6005 압출재의 기계적 성능 향상을 위한 최적 공법 설계 (Optimum Design of the Friction Stir Welding Process on A6005 Extruded Alloy for Railway Vehicles to Improve Mechanical Properties)

  • 원시태;김원경
    • Journal of Welding and Joining
    • /
    • 제27권5호
    • /
    • pp.81-87
    • /
    • 2009
  • Recently, extruded aluminium-alloy panels have been used in the car bodies for the purpose of the light-weight of railway vehicles and FSW(Friction Stir Welding), which is superior to the arc weldings, has been applied in the railway vehicles. This paper presents the optimum design of the FSW process on A6005 extruded alloy for railway vehicles to improve its mechanical properties. Rotational speed, welding speed and tilting angle of the tool tip were chosen as design parameters. Three objective functions were determined; maximizing the tensile strength, minimizing the hardness and maximizing the difference between the normalized tensile strength and hardness. The tensile tests and the hardness tests for fifteen FSW experiments were carried out according to the central composite design table. Recursive model functions on three characteristic values, such as the tensile strength, the hardness difference(${\Delta}Hv$) and the difference of normalized tensile strength and ${\Delta}Hv$, were estimated according to the classical response surface analysis methodology. The reliability of each recursive function was verified by F-test using the analysis of variance table. Sensitivity analysis on each characteristic value was done. Finally, the optimum values of three design parameters were found using Sequential Quadratic Programming algorithm.

한국형 고속틸팅열차의 중간부 충돌에너지 흡수구조에 대한 연구 (A study on crash energy absorption design of passenger-car extreme structure of tilting train prototype)

  • 권태수;정현승;구정서
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.326-330
    • /
    • 2005
  • Crahworthy design of trains is now indispensable procedure in modern railway vehicle design for ensuring the safety of passengers and crew. It is now widely recognized that a more strategic approach is needed in order to absorb higher level energy in a controlled manner and minimize passenger injuries effectively. The first design step in this strategic approach is the design of the front end structure(so called HE extremities) to absorb a large part of total impact energy and then the structure of passengers non-accommodation zones(so called HE extremities) is designed to absorb the rest of impact energy. In this paper, the passengers entrance door area is selected as the LE(low energy) extremities and the design of the LEE was carried out. The main part of LEE design procedures is the design of energy absorbing tubes. For this purpose, the several tube candidates are introduced and compared to each others with numerical crash simulation.

  • PDF