• 제목/요약/키워드: Tilt Angle Sensor

검색결과 62건 처리시간 0.024초

센서데이터 융합을 이용한 원주형 물체인식 (Cylindrical Object Recognition using Sensor Data Fusion)

  • 김동기;윤광익;윤지섭;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.656-663
    • /
    • 2001
  • This paper presents a sensor fusion method to recognize a cylindrical object a CCD camera, a laser slit beam and ultrasonic sensors on a pan/tilt device. For object recognition with a vision sensor, an active light source projects a stripe pattern of light on the object surface. The 2D image data are transformed into 3D data using the geometry between the camera and the laser slit beam. The ultrasonic sensor uses an ultrasonic transducer array mounted in horizontal direction on the pan/tilt device. The time of flight is estimated by finding the maximum correlation between the received ultrasonic pulse and a set of stored templates - also called a matched filter. The distance of flight is calculated by simply multiplying the time of flight by the speed of sound and the maximum amplitude of the filtered signal is used to determine the face angle to the object. To determine the position and the radius of cylindrical objects, we use a statistical sensor fusion. Experimental results show that the fused data increase the reliability for the object recognition.

  • PDF

스트랩다운 관성항법시스템의 초기 개략정렬 알고리즘 개발 (Development of an Initial Coarse Alignment Algorithm for Strapdown Inertial Navigation System)

  • 박찬국;김광진;박흥원;이장규
    • 제어로봇시스템학회논문지
    • /
    • 제4권5호
    • /
    • pp.674-679
    • /
    • 1998
  • In this paper, a new coarse alignment algorithm is proposed for roughly determining the initial attitude of the vehicle. The algorithm, referred as two-step coarse alignment algorithm, computes roll and pitch angle of the vehicle using accelerometer outputs, and then determines yaw angle with gyro outputs. With the geometric relation between sensor outputs and attitude angles, the algorithm error is analytically derived and compared with the previous coarse alignment algorithm that computes a transformation matrix using accelerometer md gyro outputs simultaneously. The simulation is also performed by varying the sensor errors. The results show that the proposed two-step coarse alignment algorithm has better performance for east tilt angle.

  • PDF

Sensor Module for Detecting Postural Change and Falls

  • Jeon, G.R.;Ahn, S.J.;Shin, B.J.;Kang, S.C.;Kim, J.H.
    • 센서학회지
    • /
    • 제23권6호
    • /
    • pp.362-367
    • /
    • 2014
  • In this study, a postural change detection sensor module (PCDSM) was developed to detect postural changes in activities of daily living (ADL) and falls. The PCDSM consists of eight mercury sensors that measure angle variations in $360^{\circ}$ rotation and $90^{\circ}$ tilting. From the preliminary study, the output characteristics of the PCDSM were confirmed with the angle variations of rotational motion and a tilting table. Three experiments were conducted to test rotational motion, postural changes, and falling and lying. The results confirmed that the PCDSM could effectively detect postural changes, movement patterns, and falls or non-falls.

고속 이앙기의 유압 수평 제어 장치 개발에 관한 연구 (Development of a Hydraulic Level Control System for High-speed Rice Transplanting Machines)

  • 정연근;정병학;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제27권2호
    • /
    • pp.79-88
    • /
    • 2002
  • This study was conducted to develop system for high speed rice transplanting machines. The control system includes a sensor detecting the tilt angle of the seedling bed, a micro-controller and a hydraulic system consisting of a double acting cylinder, a four-way three-position solenoid valve, a relief valve and a hydraulic pump. The levelling system shared the pump with the existing steering control, resulting in a tandem center circuit for the steering and levelling control systems. Using the input signal from the sensor, the micro-controller determined and generated the output signal to control the cylinder through the solenoid valve to keep the seedling bed always parallel to the water surface regardless of soil unevenness during the transplanting operations. Both an ON/OFF and a PWM control schemes were tested. When the flow rate was more than 1 ι/min in the ON/OFF control, the system showed unstable rolling. However, in the PWM control, the system worked stably although the flow rate was more than 1 ι/min. The PWM control showed a better performance when a large difference between the angle and the dead band of the control system occurred. The characteristics of tile system response to given tilt angles were predicted by a computer simulation. Both the ON/OFF and the PWM control systems worked well providing that the operating and waiting times were properly adjusted.

초음파 센서와 실린더형 등대를 이용한 이동 로봇의 위치 추정 (The Mobile Robot Localizaion Using a Single Sonalr and Cylindrical Beacon)

  • 범희락;조형석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.570-574
    • /
    • 1993
  • This paper proposes a new method of estimating the position and heading angle of a mobile robot moving on a flat surface. The proposed localization method utilizes two passive beacons and a single rotating ultrasonic sensor. The passive beacons consist of two cylinders with different diameters and reflect the ultrasonic pulses coming from the sonar sensor mounted on the mobile robot. The geometric parameter set of beacon is acquired from the sonar scan data obtained at a single mobile robot location using a new data processing algorithm. Form this parameter set, the position and heading angle of the mobile robot is determined directly. The performance and validity of the proposed method are evaluated using two beacons and a single sonar sensor attached at the pan-tilt device mounted on a mobile robot, named LCAR, in our laboratory.

  • PDF

기울기 센서와 근전도를 이용한 보행패턴 특징 추출에 관한 연구 (A study on extract in gait pattern characteristic using a tilt sensor and EMG)

  • 문동준;김주영;정현두;노시철;최흥호
    • 재활복지공학회논문지
    • /
    • 제7권2호
    • /
    • pp.75-84
    • /
    • 2013
  • 본 연구에서는 근전도 신호를 이용하여 보행주기에 따른 패턴 및 특징을 시간영역과 주파수영역으로 나누어 분석하였다. 보행주기를 입각기와 유각기로 나누어 평지보행과 계단보행 실험을 실시하여 그 결과를 분석하였으며, 이때 시상면에서의 하퇴부 각도와 대퇴사두근과 대퇴이두근의 근전도 신호를 대상으로 하였다. 하퇴부의 기울기는 모든 보행에서 HS일 때 가장 큰 기울기 값을 나타내었으며, TO일 때 가장 낮은 값을 나타내었다. 시간영역에서의 근전도 분석은 모든 보행에서 보행주기에 따라 IEMG가 일정한 패턴을 보였으며, 보행 종류 및 주기 판단에 가장 용이할 것으로 판단된다. 주파수영역에서의 분석은 시간에 따른 주파수 분석이 가능한 STFT법을 사용하였으며, 기울기센서를 이용하여 보행주기를 구분하고자 하였다. 또한 STFT한 결과를 스펙트럼으로 나타내어 분석하였으며, 모든 보행에서 입각기가 유각기보다 더 높은 주파수를 가지는 것을 확인하였다. 본 연구를 통하여 근전도와 시상면에서의 하퇴부 기울기를 이용하여 보행주기 판단 및 분석의 가능성을 확인하였으며, 이를 활용하면 하지 절단환자의 보행의지를 판단하여 의족제어 및 효율적 재활에 기여할 수 있을 것으로 판단된다.

  • PDF

자이로 센서를 이용한 유모차 자동 브레이크 시스템 (Automatic Brake System For Stroller Using Gyro Sensor)

  • 민백규;박건우;박정배;김현아;고윤석
    • 한국전자통신학회논문지
    • /
    • 제12권4호
    • /
    • pp.599-606
    • /
    • 2017
  • 본 논문에서는 유모차 안전사고를 줄이기 위하여 유모차 자동 브레이크 시스템을 설계, 제작하였다. 아두이노를 기반으로 초음파센서를 이용하여 운전자 손의 핸들 접촉 유무를 판단하고, 자이로 센서로 유모차의 현재 기울어진 정도를 검출하도록 설계하였다. 다음 유모차 운전자의 손이 인식되지 않고 기울기가 특정각도를 넘어가면 서보모터가 작동하여 유압식 브레이크를 작동시켜 내리막길에서의 사고를 방지하도록 설계, 제작하였다. 끝으로 현재 상태표시 및 브레이크 원격제어가 가능하도록 스마트폰 기반의 어플리케이션을 개발하였다.

스마트센서를 활용한 근골격계 질환 위험 평가 플랫폼 (A Work-related Musculoskeletal Disorder Risk Assessment Platform using Smart Sensor)

  • 노병국
    • 한국안전학회지
    • /
    • 제30권3호
    • /
    • pp.93-99
    • /
    • 2015
  • Economic burden of work-related musculoskeletal disorder(WMDs) is increasing. Known causes of WMDs include improper posture, repetition, load, and temperature of workplace. Among them, improper postures play an important role. A smart sensor called SensorTag is employed to estimate the trunk postures including flexion-extension, lateral bend, and the trunk rotational speeds. Measuring gravitational acceleration vector in the smart sensor along the tri-orthogonal axes offers an orientation of the object with the smart sensor attached to. The smart sensor is light in weight and has small form factor, making it an ideal wearable sensor for body posture measurement. Measured data from the smart senor is wirelessly transferred for analysis to a smartphone which has enough computing power, data storage and internet-connectivity, removing need for additional hardware for data post-processing. Based on the estimated body postures, WMDs risks can be conviently gauged by using existing WMDs risk assesment methods such as OWAS, RULA, REBA, etc.

가속도센서와 기울기센서를 이용한 실시간 낙상 감지 시스템에 관한 연구 (The Study of Realtime Fall Detection System with Accelerometer and Tilt Sensor)

  • 김성현;박진;김동욱;김남균
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1330-1338
    • /
    • 2011
  • Social activities of the elderly have been increasing as our society progresses toward an aging society. As their activities increase, so does the occurrence of falls that could lead to fractures. Falls are serious health hazards to the elderly. Therefore, development of a device that can detect fall accidents and prevent fracture is essential. In this study, we developed a portable fall detection system for the fracture prevention system of the elderly. The device is intended to detect a fall and activate a second device such as an air bag deployment system that can prevent fracture. The fall detection device contains a 3-axis acceleration sensor and two 2-axis tilt sensors. We measured acceleration and tilt angle of body during fall and activities of daily(ADL) living using the fall detection device that is attached on the subjects'. Moving mattress which is actuated by a pneumatic system was used in fall experiments and it could provide forced falls. Sensor data during fall and ADL were sent to computer and filtered with low-pass filter. The developed fall detection device was successful in detecting a fall about 0.1 second before a severe impact to occur and detecting the direction of the fall to provide enough time and information for the fracture preventive device to be activated. The fall detection device was also able to differentiate fall from ADL such as walking, sitting down, standing up, lying down, and running.

이족 트랜스포머 로봇의 외란 대응 자세 안정화 제어 (Posture Stabilization Control of Biped Transformer Robot under Disturbances)

  • 김근태;여명훈;김정엽
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.241-250
    • /
    • 2023
  • This paper describes the posture stabilization control of a bipedal transformer robot being developed for military use. An inverted pendulum model with a rectangular that considers the robot's inertia is proposed, and a posture stabilization moment that can maintain the body tilt angle is derived by applying disturbance observer and state feedback control. In addition, vertical force and posture stabilization moments that can maintain the body height and balance are derived through QP optimization to obtain the necessary torques and vertical force for each foot. The roll and pitch angles of the IMU sensor attached to the robot's feet are reflected in the ankle joint to enable flexible adaptation to changes in ground inclination. Finally, the effectiveness of the proposed algorithm in posture stabilization is verified by comparing and analyzing the difference in body tilt angle due to disturbances and ground inclination changes with and without algorithm application, using Gazebo dynamic simulation and a down-scale test platform.