• 제목/요약/키워드: Tillage depth

검색결과 71건 처리시간 0.027초

유사기구에 의한 경운작업기의 견인저항 예측을 위한 실험적 연구 (Experimental Study for Draft Prediction of Tillage Implement by Analog Tool)

  • 이규승;조성찬;박원엽
    • Journal of Biosystems Engineering
    • /
    • 제22권2호
    • /
    • pp.117-126
    • /
    • 1997
  • A series of soil bin experiment was carried out on sandy loam to investigate if it is possible to predict implement draft by some analog tool. Chisel configuration resembling a cone penetrometer section was used as an analog tool. The angle of cone was 30 degree. Three types of tillage implement, or oriental janggi, moldboard plow and chisel plow were chosen for this study. Experimental tillage speed was 0.22, 0.33, 0.49 m/s ad tillage depth was 8, 12, 16cm. For the experimental tillage speed range, the increase of tillage speed did not affect the tillage draft for the three types of implement and analog tool, but as the tillage depth increased, tillage draft of the three types of implement and analog tool increased linearly. The linear relationship was found between the tillage draft of analog tool and that of three types of tillage implement for the experimental tillage depth and speed range with high value of $R^2$ Thus it was concluded from the above results that an analog tool can be used to predict the tillage draft of oriental janggi, moldboard plow and chisel plow. But more experiment for various soil types and theoretical verification are needed for more generallization.

  • PDF

Performance Test of a Real-Time Measurement System for Horizontal Soil Strength in the Field

  • Cho, Yongjin;Lee, DongHoon;Park, Wonyeop;Lee, Kyouseung
    • Journal of Biosystems Engineering
    • /
    • 제41권4호
    • /
    • pp.304-312
    • /
    • 2016
  • Purpose: Soil strength has been measured using a cone penetrometer, which is making it difficult to obtain the spatial data required for precision agriculture. Our objectives were to evaluate real-time horizontal soil strength (RHSS) to measure soil strength in real time while moving across the field. Using the RHSS data, the tillage depth was determined, and the power consumption of a tractor and rotavators were compared. Methods: The horizontal soil-strength index (HSSI) obtained by the RHSS was compared with the cone index (CI), which was measured using a cone penetrometer. Comparison analysis in accordance with the measurement depth that increased at 5-cm interval was conducted using kriged maps at six sensing depths. For tillage control and evaluation of the power consumption, the system was installed with a potentiometer for tillage depth, a torque sensor from the rear axle, and a power take-off (PTO) shaft. Results: The HSSI was lower than the CI, but they were the same at 54.81% of the total grids for the 5-cm depth and at 3.85% for the 10-cm depth. In accordance with the recommended tillage map, tillage operations between 0 and 15 cm left 2.3% and 7% residue cover on the soil, and that between 20 and 10 cm covered a wider utilization of 3% and 18.4%, respectively. When the tillage depth was 15 cm, the comparison result of the power requirements between the PTO and rear axle in terms of control performance revealed that the maximum power requirements of the axle and PTO were 44.63 and 23.24 kW, respectively. Conclusions: An HSSI measurement system was evaluated by comparison with the conventional soil strength measurement system (CI) and applied to a tractor to compare the tillage power consumption. Further study is needed on its application to various farm works using a tractor for precision agriculture.

경운과 무경운에 따른 토양 내 잡초종자의 수직적 분포양상 (Vertical Distribution of Weed Seed in the Soil as affected by Tillage and No-till)

  • 이병모;박광래;이연;조정래;이상민;안난희;최현석;지형진
    • Weed & Turfgrass Science
    • /
    • 제1권4호
    • /
    • pp.1-5
    • /
    • 2012
  • 번거로운 토양 종자은행 조사를 위해 간편한 모니터링 방법을 고안하였으며 이를 이용하여 경운과 무경운에 따른 토양내 잡초종자의 수직적 분포 양상을 관찰하였다. 본 시험은 강원도 화천의 유기농 옥수수 포장에서 수행되었다. 포장의 조성은 2010년부터 경운과 무경운 조건으로 2년간 조성된 무경운 포장에서 30 cm 깊이의 비파괴 토양 시료를 채취한 후 그 안에서 발생하는 잡초를 헤아려 종자의 토양 분포정도를 조사하였다. 토양속 잡초 종자의 분포는 경운구의 경우 15 cm 이내에 75%의 종자가 분포되어 있는 등 30 cm 깊이까지 대체로 고르게 분포되고 있었던 반면 무경운 조건에서는 15 cm 이내에 85% 이상의 종자가, 20 cm 이내에 93%의 종자가 분포되어 대체로 토양 표면에 집중되었다. 한편 잡초의 발생초종수와 개체수는 경운구가 무경운구에 비해 3배나 많은 양이 발생되었으며 주요 우점초종은 돌피, 석류풀, 바랭이 등의 일년생 초종이었다.

두둑을 재활용한 한국형 무경운 농업 I. 경운방법에 따른 시설재배 토양의 물리적 특성: 균열, 관입저항, 배수, 보수력 변화 (No-tillage Agriculture of Korean-Type on Recycled Ridge I. Changes in Physical Properties : Soil Crack, Penetration Resistance, Drainage, and Capacity to Retain Water at Plastic Film Greenhouse Soil by Different Tillage System)

  • 양승구;정우진
    • 한국유기농업학회지
    • /
    • 제24권4호
    • /
    • pp.699-717
    • /
    • 2016
  • 본 연구는 시설하우스 재배에서 앞그루작물 재배 시 형성된 두둑을 재활용하여 뒷그루 작물을 무경운으로 재배할 경우 토양의 이화학성과 생육 및 수량에 미치는 영향을 구명하고자 추진한 연구 결과의 일부이다. 중동통(jd)의 두둑에서 토양 균열은 관찰되었으나 고랑에서는 관찰되지 않았다. 관행 경운 토양 두둑의 길이 방향으로 경운 5개월 후에 최대 폭 30 mm, 최대 깊이 15.3 cm, 길이 37~51 cm 정도 되는 균열이 3개 정도 발생되었다. 그리고 두둑의 폭 방향에서는 길이 7~28 cm 정도 되는 균열이 7.5개 정도 발생되었다. 무경운 1년차는 두둑의 길이 방향에서 최대 폭 18 mm, 최대 깊이는 30 cm, 길이는 140~200 cm 정도 되는 균열이 1개 정도 발생되었으며, 두둑 폭 방향의 균열은 최대 폭 22 mm, 최대 깊이는 18.5 cm에 길이는 6~22 cm 정도 되는 균열이 11개 정도 발생되었다. 한편 모래함량이 많은 중동통(jd)의 무경운 2년차 토양에서 균열은 관찰되지 않았으나, 점토함량이 많은 지산통(jd) 무경운 7년차 토양에서는 균열이 관찰되었다. 중동통(jd) 시설재배의 미사질양토의 관행 경운토양 표토 1 cm 깊이의 관입저항은 59 kPa에 비하여 무경운 1년차는 유의적으로 높았다. 경운 토양 20 cm 깊이의 관입저항은 161~185 kPa 수준이었고 36~39 cm 깊이의 관입저항 503~507 kPa을 정점으로 감소되었다. 무경운 1년차 토양 관입저항은 5~30 cm 깊이까지 167~172 kPa을 유지하였으나, 43 cm 깊이에서 437 kPa를 최대값으로 감소되었다. 무경운 2년차 표토의 관입저항은 1 cm 깊이의 81 kPa에서 6 cm 깊이는 243 kPa로 직선적인 증가를 하였다. 논에서 전환한 지산통(ji) 시설 재배지의 관행 경운 토양 관입저항은 표토 1 cm 깊이로부터 52 cm 깊이까지 토양이 깊어짐에 따라서 직선적인 증가를 하였으나, 그 이상의 깊이에서는 증가되지 않았다. 그러나 두둑을 재활용한 무경운 7년차 토양의 표토 1 cm와 2 cm 깊이의 관입저항은 직선적인 증가를 보여 경운 토양에 비하여 현저하게 증가되었으나, 그 이상의 깊이에서는 거의 변동이 없었다. 지산통(ji)과 중동통(jd)의 쟁기 바닥층은 표토에서 10~12 cm 깊이, 작토층은 21 cm 깊이까지로 추정되었다. 그러나 지산통(ji)의 경운 토양의 경반층은 33~35 cm 깊이로 추정되었으나 무경운 7년차는 경반층이 토양 38~44 cm 깊이에서 흔적으로만 존재하였다. 표토의 수분함량은 관행 경운 토양과 두둑을 재활용한 무경운 토양에서 경운 방법 간에 차이가 없었으나, 20 cm 깊이의 무경운 토양 수분함량은 14%로 경운 토양 25%에 비하여 현저하게 낮았다. 1 Bar와 15 Bar에서 측정한 표토의 보수력은 관행 경운토양 비하여 두둑을 재활용한 무경운 1년차와 무경운 2년차에서 증가되었다. 그리고 무경운 2년차 심토의 보수력은 1 Bar와 3 Bar에서 경운 토양과 무경운 1년차에 비하여 증가되는 경향이었다.

Paddy Soil Tillage Impacts on SOC Fractions

  • Jung, Won-Kyo;Han, Hee-Suk
    • 한국토양비료학회지
    • /
    • 제40권4호
    • /
    • pp.326-329
    • /
    • 2007
  • Quantifying soil organic carbon (SOC) has long been considered to improve our understanding of soil productivity, soil carbon dynamics, and soil quality. And also SOC could contribute as a major soil management factor for prescribing fertilizers and controlling of soil erosion and runoff. Reducing tillage intensity has been recommended to sequester SOC into soil. On the other hand, determination of traditional SOC could barely identify the tillage practices effect. Physical soil fractionation has been reported to improve interpretation of soil tillage practices impact on SOC dynamics. However, most of these researches were focused onupland soils and few researches were conducted on paddy soils. Therefore, the objective of this research was to evaluate paddy soil tillage impact on SOC by physical soil fractionation. Soils were sampled in conventional-tillage (CT), partial-tillage (PT), no-tillage (NT), and shallow-tillage (ST)plots at the National Institute of Crop Science research farm. Samples were obtained at the three sampling depth with 7.5-cm increment from the surface and were sieved with 0.25- and 0.053-mm screen. Soil organic carbon was determined by wet combustion method. Significant difference of SOC contentwas found among sampling soil depth and soil particle size. SOC content tended to increase at the ST plot with increasing size of soil particle fraction. We conclude that quantifying soil organic carbon by physical soil particle fractionation could improve understanding of SOC dynamics by soil tillage practices.

Effects of No-tillage Dry-seeding on Rice Growth and Soil Hardness

  • Choi, Jong-Seo;Kim, Sook-Jin;Park, Jeong Hwa;Kang, Shingu;Park, Ki-Do;Yang, Woonho
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.662-668
    • /
    • 2016
  • No-tillage dry-seeding of rice can offer potential benefits by reducing time and labor cost compared with conventional tillage practices. This study was conducted to investigate the effects of no-tillage dry-seeding on rice growth and soil hardness in comparison with other rice cultivation methods, machine transplanting and wet-hill-seeding on puddled paddy. The seedling stand fell within optimum range for both no-till dry-seeding and wet-hill-seeding on puddled paddy. Plant height, number of tillers and SPAD values in no-tillage dry-seeding cultivation were higher than those observed in other methods. There were no significant differences in grain yield of rice among three cultivation methods. The quality characteristics of milled rice grown in no-tillage dry-seeding were similar to those grown in other cultivation methods. Soil hardness in top 10 cm depth was significantly higher in no-tillage dry-seeding than other cultivation methods, while soil hardness below 10 cm depth was highest in machine transplanting cultivation. Results indicate that no-tillage dry-seeding practice is comparable to conventional tillage system in terms of seedling establishment, growth, yield and grain quality.

Tillage Characteristics Estimation of Crank-type and Rotary-type Rotavators by Motion Analysis of Tillage Blades

  • Nam, Ju-Seok;Kim, Dae-Chun;Kim, Myoung-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • 제37권5호
    • /
    • pp.279-286
    • /
    • 2012
  • Purpose: This study has been conducted to investigate the applicability of motion analysis of tillage blade for estimation of tillage characteristics of crank-type and rotary-type rotavators. Methods: The interrelation between tillage traces from motion analysis and field test results including rotavating depth, pulverizing ratio and inversion ratio at the same work conditions were analyzed for both crank-type and rotary-type rotavators. The work conditions include working speed of prime mover tractor and PTO speed of rotavators. For the motion analysis, joint conditions of main connecting component were specified considering the actual working mechanism of rotavator. Results: There were important correlations for the trend between motion analysis and field test results. Conclusions: Although further study is needed for applying motion analysis to estimate the accurate tillage related parameters such as rotavating depth, the soil pulverizing ratio and inversion ratio, it could be used to compare the tillage characteristics of various rotavators quickly and simply.

STUDY ON A CONTACT TYPE SENSOR FOR DETECTING HEIGHT FROM GROUND SURFACE

  • J. K. Ha;Lee, J. Y.;Park, Y. M.;Kim, T. S.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.178-187
    • /
    • 2000
  • The tillage operation by rotary implements is widely done in Korea. In the case of rotary implements, the tillage depth control system is one of important implement control systems. A contact type-sensor for measurement of the ground height was designed and fabricated to evaluate the possibility of application of the sensor on the tillage depth control system. Indoor experiments were conducted to obtain static and dynamic detection characteristics of the sensor under various conditions; 1) several moisture contents for four soil samples, 2) two soil surfaces with a designed configuration, 3) four heights of the sensor from the soil surface, 4) five traveling speeds of the carrier on which the sensor was attached, and so on. The experimental results showed the detection characteristics of the sensor sufficient as the ground height sensor of the tillage depth control system.

  • PDF

트랙터 로터리 작업과 쟁기 작업의 승차 진동 특성 (Characteristics of Ride Vibrations in Rotary Tillage and Plowing Operations by Tractor)

  • 박영준;박서범;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제29권3호
    • /
    • pp.207-216
    • /
    • 2004
  • This study was intended to investigate the characteristics of ride vibrations transmitted to tractor operator during rotary tillage and plowing operations. Seat accelerations of a 41 ps diesel tractor in rotary tillage and plowing were measured and evaluated as specified in the ISO 2631-1. Effects of working speed and tilling depth on ride vibration were investigated. The level of ride vibration was also evaluated in terms of health guidance caution zones. Some of the results of the study are as follows: 1. The level of ride vibration in plowing was about 4.3 times greater than in rotary tillage. 2. The effect of working speed in rotary tillage differs depending upon the tillage depth. The level of ride vibration was increased with the speed, but it decreased over a certain tillage depth. Fore and aft vibration was 2.2-2.7 times severer than horizontal and vertical vibrations. Dominant frequency band was 1-3.15 ㎐ in fore and aft, 1-3.15㎐ and 16-25㎐ in horizontal, and 16-25㎐ in vertical directions. 3. Plowing reduced the ride vibration by 42.8-50.2%. But its positive effect decreased as the plowing speed increased. In plowing operation, ride vibration was similar degrees in fore and aft, horizontal and vertical directions. The dominant frequency band in plowing operation was 1-2.5㎐ in fore and aft, 1-2.5㎐ in horizontal, and 1-8㎐ in vertical directions. 4. On a basis of daily work hours of 4, total level of ride vibrations in plowing operation is likely to be harmful to operator's health.

The Changes in the Physical Properties of Soil with Tillage Methods (I)

  • Park, Jun-Gul;Lee, Gu-Seung;Cho, Sung-Chan;Chang, Young-Chang;Noh, Kwang-Mo;Chung, Sun-Ok
    • Agricultural and Biosystems Engineering
    • /
    • 제6권2호
    • /
    • pp.59-64
    • /
    • 2005
  • In the study, the cone index, the cohesion and the internal resistant angle of soil were measured before and after tillage in order to suggest relative improvement in soil properties. The tillage methods tested in the study were five combinations of plow and rotary tillage operation and the experiments were performed on five selected test fields. The maximum tillage depth was 20 cm under the ground. The CIs for all the tillage operations were improved in comparison with those before tillage. The best combination of tillage operations for improving the CIs of soil was one plow operation followed by one rotary. After applying the tillage operations, the internal resistance angle reduced by 7-8 degree and the cohesion decreased up to about $1N/cm^2$ in comparison with those before tillage. We concluded that the cone index, the cohesion and the internal resistant angle of soil could be used as measures for representing the relative degree of tillage for a specific tillage operation. In addition, the study was useful as a basic research tool for developing an decision making system that determines an optimal tillage method with soil properties.

  • PDF