• Title/Summary/Keyword: Tie-down

Search Result 57, Processing Time 0.026 seconds

Topology optimization of tie-down structure for transportation of metal cask containing spent nuclear fuel

  • Jeong, Gil-Eon;Choi, Woo-Seok;Cho, Sang Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2268-2276
    • /
    • 2021
  • Spent nuclear fuel, which can degrade during long-term storage, must be transported intact in normal transport conditions. In this regard, many studies, including those involving Multi-Modal Transportation Test (MMTT) campaigns, have been conducted. In order to transport the spent fuel safely, a tie-down structure for supporting and transporting a cask containing the spent fuel is essential. To ensure its structural integrity, a method for finding an optimum conceptual design for the tie-down structure is presented. An optimized transportation test model of a tie-down structure for the KORAD-21 metal cask is derived based on the proposed optimization approach, and the transportation test model is manufactured by redesigning the optimized model to enable its producibility. The topology optimization approach presented in this paper can be used to obtain optimum conceptual designs of tie-down structures developed in the future.

The structural safety assessment of a tie-down system on a tension leg platform during hurricane events

  • Yang, Chan K.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.263-283
    • /
    • 2011
  • The performance of a rig tie-down system on a TLP (Tension Leg Platform) is investigated for 10-year, 100-year, and 1000-year hurricane environments. The inertia loading on the derrick is obtained from the three-hour time histories of the platform motions and accelerations, and the dynamic wind forces as well as the time-dependent heel-induced gravitational forces are also applied. Then, the connection loads between the derrick and its substructure as well as the substructure and deck are obtained to assess the safety of the tie-down system. Both linear and nonlinear inertia loads on the derrick are included. The resultant external forces are subsequently used to calculate the loads on the tie-down clamps at every time step with the assumption of rigid derrick. The exact dynamic equations including nonlinear terms are used with all the linear and second-order wave forces considering that some dynamic contributions, such as rotational inertia, centripetal forces, and the nonlinear excitations, have not been accounted for in the conventional engineering practices. From the numerical simulations, it is seen that the contributions of the second-order sum-frequency (or springing) accelerations can be appreciable in certain hurricane conditions. Finally, the maximum reaction loads on the clamps are obtained and used to check the possibility of slip, shear, and tensile failure of the tie-down system for any given environment.

Experimental Study on Effect of Confinement Details for Lap Splice of Headed Deformed Reinforcing Bars in Grade SD400 and SD500 (구속상세가 SD400 및 SD500 확대머리 이형철근의 겹침이음에 미치는 영향에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.62-71
    • /
    • 2015
  • KCI 2012 and ACI318-11 contains development length provisions for the use of headed deformed bars in tension and does not allow their tension lap splices. In ACI318-11, the confinement factor, such as transverse reinforcement factor, is not used to calculate the development length of headed bars. The purpose of this experimental study is to evaluate the effect of confinement details to the lap splice performance of headed deformed reinforcing bars in grade SD400 and SD500. The confinement details are stirrups and tie-down bars in lap zone. Test results showed that specimens with only stirrups had the brittle failure and could not increase lap strengths, and that specimens with composite confinements by stirrups and tie-down bars had the flexural strengths over than nominal flexural strengths. Stirrups with tie-down bars can have an effect on improvement in lap splice of headed bars in grade SD400 and SD500.

A correlation method for high-frequency response of a cargo during dry transport in high seas

  • Vinayan, Vimal;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.143-159
    • /
    • 2016
  • Cargo, such as a Tension Leg Platform (TLP), Semi-submersible platform (Semi), Spar or a circular Floating Production Storage and Offloading (FPSO), are frequently dry-transported on a Heavy Lift Vessel (HLV) from the point of construction to the point of installation. The voyage can span months and the overhanging portions of the hull can be subject to frequent wave slamming events in rough weather. Tie-downs or sea-fastening are usually provided to ensure the safety of the cargo during the voyage and to keep the extreme responses of the cargo, primarily for the installed equipment and facilities, within the design limits. The proper design of the tie-down is dependent on the accurate prediction of the wave slamming loads the cargo will experience during the voyage. This is a difficult task and model testing is a widely accepted and adopted method to obtain reliable sea-fastening loads and extreme accelerations. However, it is crucial to realize the difference in the inherent stiffness of the instrument that is used to measure the tri-axial sea fastening loads and the prototype design of the tie-downs. It is practically not possible to scale the tri-axial load measuring instrument stiffness to reflect the real tie-down stiffness during tests. A correlation method is required to systematically and consistently account for the stiffness differences and correct the measured results. Direct application of the measured load tends to be conservative and lead to over-design that can reflect on the overall cost and schedule of the project. The objective here is to employ the established correlation method to provide proper high-frequency responses to topsides and hull design teams. In addition, guidance for optimizing tie-down design to avoid damage to the installed equipment, facilities and structural members can be provided.

Asymmetric and symmetric modified bow-tie slotted circular patch antennas for circular polarization

  • Darimireddy, Naresh K.;Reddy, R. Ramana;Prasad, A. Mallikarjuna
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.561-569
    • /
    • 2018
  • Modern communication systems employ wideband antennas with circular polarization (CP) radiation. In this work, asymmetric modified bow-tie (ABT) and symmetric modified bow-tie (SBT) slotted circularly polarized single-point probe-fed circular patch antennas with dimensions of $40mm{\times}40mm$ for wideband applications are proposed. A 10 dB RL bandwidth of 350 MHz with CP, 3 dB axial ratio (AR) bandwidth of 100 MHz, peak gain of 4.9 dBic, and 10 dB RL bandwidth of 530 MHz with CP, 3 dB AR bandwidth of 140 MHz, peak gain of 5 dBic are obtained for ABT and SBT slotted circular patch antennas, respectively. The proposed SBT slotted patch is scaled up and down to $50mm{\times}50mm$ and $30mm{\times}30mm$, respectively. The proposed scaled-up version offers 10 dB RL and 3 dB AR bandwidths of 340 MHz and 80 MHz, with a peak gain of 5 dBic. The scaled-down version offers 10 dB RL and 3 dB AR bandwidths of 710 MHz and 180 MHz, with a peak gain of 5.25 dBic. These prototypes are suitable to work in IEEE 802.11a WLAN, ISM, and IEEE 802.11ac applications. The measured and simulated results are then discussed and compared.

Provision for Earthquake with Tie up Device in X-ray Equipment (지진을 대비한 방사선기기의 고정방법)

  • Kim, Jung-Min;Miyamoto, Tadao
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.39-48
    • /
    • 2002
  • Earthquake are not frequent in korea but exist. The purpose of this study is to make a fixation(tie up) device against earthquake for radiologic department installation. It is considered that the device will prevent the X-ray equipment fall down, slip, Jumping therefor save the X-ray equipment itself and making possible to examine patients even when occuring earthquake, Discussion on how to make and how to set up was researched.

  • PDF

The Effect of Wind Load on the Stability of a Container Crane (풍하중이 컨테이너 크레인의 안정성에 미치는 영향 분석)

  • Lee Seong Wook;Shim Jae Joon;Han Dong Seop;Park Jong Seo;Han Geun Jo;Lee Kwon Soon;Kim Tae Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.148-155
    • /
    • 2005
  • This study was carried out to analyze the effect of direction of wind load and machinery house location on the stability of container crane loading/unloading a container on a vessel. The overturning moment of container crane under wind load at 50m/s velocity was estimated by analyzing reaction forces at each supporting point. And variations of reaction forces at each supporting point of a container crane were analyzed according to direction of wind load and machinery house location. The critical location of machinery house was also investigated to install a tie-down which has an anti-overturning function of container crane at the land side supporting point.

Vehicle dynamic behavior comparison between two different constraining methods on a chassis dynamometer (차대 동력계에서 자동차 구속조건에 따른 거동 특성 비교)

  • Kang, Yeon Jun;Kim, Heesoo;Song, David P.;Min, Dongwoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.1000-1003
    • /
    • 2014
  • The primary purpose of this study is to observe the dynamic behavior within a vehicle on chassis dynamometer throughout cleat impact testing with two different constraining setups (Tie-down strap and one point fixation). Throughout this empirical experiment, no outstanding dynamic behavior characteristics are observed between two setups and thus, the performance of the one point fixation device is validated. Neither the interior noise nor acceleration at driver seat rail and knuckle is heavily influenced by two different constraining methods. However, one point fixation is far more advantageous considering its shorter set up time and its capability of measuring traction force with its built in force sensor.

  • PDF

A Study on Proper Procedure for Helicopter Transmission Endurance Test (적절한 헬기 트랜스미션 내구도 시험절차 연구)

  • Lee, Sangmok;Hwang, Jungsun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.771-778
    • /
    • 2013
  • Transmission is a core component of helicopter to transmit power from engine to rotor and must have a endurance to be able to show satisfactorily its performance required during its life time. When developing a new helicopter, both military and civil airworthiness authorities require a tie-down test to verify its endurance. Procedure for transmission endurance test is described in FAR part 29 or US military specification but its details are more or less ambiguous. In this paper, we have proposed a proper procedure for transmission endurance test by giving KUH transmission endurance test example including determination of applicable torque, load and test profile.

The Analysis of a Structural Stability of a 50ton Container Crane according to an Increased Design Wind velocity (설계풍속 상향 조정에 따른 50ton급 컨테이너 크레인의 구조 안정성 평가)

  • Kwon Soon-Kyu;Lee Seong-Wook;Han Dong-Seop;Shim Jae-Joon;Han Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.241-246
    • /
    • 2005
  • This study is carried out to analyze the stability of a container crane in according to the change of a wind direction and a machinery house location when a wind load of a wind velocity, 75m/s was applied on the state stowing a container crane by a heavy wind A design wind load applied to this study was calculated in observance of 'Load Criteria of Building Structure'. And we analyzed the reactions of each supporting points according to appling a wind direction to an interval of $15^{\circ}$ in $0^{\circ}\~180^{\circ}$ and the structure stability of a container crane according to changing a machinery house location occupying $15\%$ of a container crane weight. From a results of this study, we presented a design criteria of an overturning disturbance equipment, tie-down.

  • PDF