• Title/Summary/Keyword: Tie-Plate

Search Result 37, Processing Time 0.022 seconds

The Effect and Countermeasures of The Vertical Track Settlement Caused by Expand and Contract Behavior of the High-Speed Railway Bridge Girder (고속철도 교량상판의 온도신축작용이 궤도처짐에 미치는 영향과 대책에 관한 연구)

  • 강기동
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.283-289
    • /
    • 2004
  • According to continuos welded rails on a bridge, temperature changes bring about the expansion of the bridge deck adding axil forces on the track. Moreover, the ballast on the bridge deck expansion joint is moved due to the bridge deck. If bridge decks are longer, the influence is greater, loosening ballast, causing track irregularities, and deteriorating passengers' comfort. Considering structure of bridge itself and tolerance of track irregularities caused by the loosened ballast on bridges, the maximum length of a deck should be less than 80m, which is the same as the standard of the French railway. In this study, an interaction between the expansion related to the bridge length and irregularity in longitudinal level referring to measurements and maintenance works performed in the high-speed railways was analyzed. This research shows that installation of sliding plate or vertical ballast stopper is not a good option since it is difficult to install. On the other hand, installation of movable fastener or gluing is easy but its influence is insignificant. To conclude, switch tie tamping or manual tamping is more effective than others.

Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load

  • Shadravan, Shideh;Ramseyer, Chris C.;Floyd, Royce W.
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.251-272
    • /
    • 2019
  • This study performed lateral load testing on seventeen wood wall frames in two sections. Section one included eight tests studying structural foam sheathing of shear walls subjected to monotonic loads following the ASTM E564 test method. In this section, the wood frame was sheathed with four different types of structural foam sheathing on one side and gypsum wallboard (GWB) on the opposite side of the wall frame, with Simpson HDQ8 hold down anchors at the terminal studs. Section two included nine tests studying wall constructed with oriented strand board (OSB) only on one side of the wall frame subjected to gradually applied monotonic loads. Three of the OSB walls were tied to the baseplate with Simpson LSTA 9 tie on each stud. From the test results for Section one; the monotonic tests showed an 11 to 27 percent reduction in capacity from the published design values and for Section two; doubling baseplates, reducing anchor bolt spacing, using bearing plate washers and LSTA 9 ties effectively improved the OSB wall capacity. In comparison of sections one and two, it is expected the walls with structural foam sheathing without hold downs and GWB have a lower wall capacity as hold down and GWB improved the capacity.

Cyclic tests on RC joints retrofitted with pre-stressed steel strips and bonded steel plates

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Wang, Niannian;Liu, Yaping
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.675-684
    • /
    • 2020
  • An innovative retrofit method using pre-stressed steel strips and externally-bonded steel plates was presented in this paper. With the aim of exploring the seismic performance of the retrofitted RC interior joints, four 1/2-scale retrofitted joint specimens together with one control specimen were designed and subjected to constant axial compression and cyclic loading, with the main test parameters being the volume of steel strips and the existence of externally-bonded steel plates. The damage mechanism, force-displacement hysteretic response, force-displacement envelop curve, energy dissipation and displacement ductility ratio were analyzed to investigate the cyclic behavior of the retrofitted joints. The test results indicated that all the test specimens suffered a typical shear failure at the joint core, and the application of externally-bonded steel plates and that of pre-stressed steel strips could effectively increase the lateral capacity and deformability of the deficient RC interior joints, respectively. The best cyclic behavior could be found in the deficient RC interior joint retrofitted using both externally-bonded steel plates and pre-stressed steel strips due to the increased lateral capacity, displacement ductility and energy dissipation. Finally, based on the test results and the softened strut and tie model, a theoretical model for determining the shear capacity of the retrofitted specimens was proposed and validated.

Characteristics of Cereals Prepared by Extrusion-Cooking and Freeze-drying (압출성형과 동결건조 곡류의 특성)

  • Tie, Jin;Park, Hee-Yong;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.757-762
    • /
    • 2005
  • Characteristics of cereals prepared by extrusion-cooking and freeze-drying were compared. Parameters used were water solubility index (WSI), water absorption index (WAI), paste viscosity, and sterilization. Variables for extrusion process were barrel temperature at die section (70, 90, and $110^{\circ}C$) and moisture content (25 and 30%). WAI and WSI of extruded cereals were higher, whereas trough, breakdown, and final viscosity were lower than those of raw and freeze-dried cereals. Plate counting revealed no microbes in extruded cereals, whereas microbe colony was observed in freeze-dried cereals. Extrusion-cooking at low temperature resulted in better sterilization of microbes than freeze-drying for preparation of instant cereal drinks.

Applicability of Partial Post-Tension Method for Deflection Control of Reinforced Concrete Slabs (RC슬래브의 처짐제어를 위한 상향긴장식 부분PT공법의 적용)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Sang-Sik;Kim, Yong-Nam;Lim, Joo-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.347-358
    • /
    • 2009
  • Recently, it is getting into a good situation for the flat-plate slab system to be applied. The flat-plate slab without beam, however, is often too weak to control deflection properly compared to other typical slab-beam structures, for which the post-tension method is generally regarded as one of best solutions. The post-tension (PT) method can effectively control deflection without increase of slab thickness. Despite this good advantage, however, the application of PT method has been very limited due to cost increase, technical problems, and lack of experiences. Therefore, in order to reduce difficulties on applying full PT method under the current domestic circumstances and to enhance constructability of PT system, this research proposed the partial PT method with top jacking anchorage applied in a part of span as need. For the top jacking anchorage system, the efficiency of deflection control shall be considered in detail because it can vary widely depending on the location of anchorage that can be placed anywhere as need, and tensile stresses induced at back of the anchorage zone also shall be examined. Therefore, in this study, analysis were performed on the efficiency of deflection control depending on the location of anchorage and on tensile stresses or forces using finite element method and strut and tie model in the proposed top jacking anchorage system. The proposed jacking system were also applied to the floor slabs at a construction site to investigate its applicability and the analysis results of slab behavior were compared to the measured values obtained from the PT slab constructed by the partial PT method. The result of this study indicates that the partial PT method can be very efficiently applied with little cost increase to control deflection and tensile stresses in the region as a need basis where problem exists.

The Effect and Countermeasures of the Vertical Track Settlement Caused by Expand and Contract Behavior of the High-Speed Railway Bridge Girder (고속철도 교량 바닥판의 온도신축작용이 궤도처짐에 미치는 영향과 대책에 관한 연구)

  • Kang, Kee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.673-679
    • /
    • 2005
  • According to continuous welded rails on a bridge, temperature changes bring about the expansion of the bridge deck,adding axial forces on the track. Moreover, the ballast on the bridge deck expansion joint is moved due to the bridge deck. The longer the bridge deck is, the greater the influence will be, loosening the ballast, causing track irregularities, and deteriorating passenger comfort. Considering the structure of the bridge itself and tolerance for track irregularities caused by the loosened ballast on the bridge, the maximum length of the deck should be less than 80 m, which is the same as the standard of French railways. In this study, the interaction between the expansion related to the bridge length and the irregularity in the longitudinal level, referring to measurements and maintenance work performed in high-speed railways, was analyzed. This research shows that the installation of a sliding plate or a vertical ballast stopper is not a good option, since it is difficult. On the other hand, the installation of a ZLR fastener or gluing is easy, but its influence is insignificant. In conclusion, switch tie tamping or manual tamping is more effective than other methods of what?

Seismic Performance Evaluation of Concrete-filled U-shaped Mega Composite Beams (콘크리트 채움 U형 메가 합성보의 내진성능 평가)

  • Lee, Cheol Ho;Ahn, Jae Kwon;Kim, Dae Kyung;Park, Ji-Hun;Lee, Seung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.111-122
    • /
    • 2017
  • In this paper, the applicability of a 1900mm-deep concrete-filled U-shaped composite beam to composite ordinary moment frames (C-OMFs) was investigated based on existing test results from smaller-sized specimens and supplemental numerical studies since full-scale seismic testing of such a huge sized beam is practically impossible. The key issue was the web local buckling of concrete-filled U section under negative bending. Based on 13 existing test results compiled, the relationship between web slenderness and story drift capacity was obtained. From this relationship, a 1900mm-deep mega beam, fabricated with 25mm-thick plate was expected to experience the web local buckling at 2% story drift and eventually reach a story drift over 3%, thus much exceeding the requirements of C-OMFs. The limiting width to thickness ratio according to the 2010 AISC Specification was shown to be conservative for U section webs of this study. The test-validated supplemental nonlinear finite element analysis was also conducted to further investigate the effects of the horizontal stiffeners (used to tie two webs of a U section) on web local buckling and flexural strength. First, it is shown that the nominal plastic moment under negative bending can be developed without using the horizontal stiffeners, although the presence of the stiffeners can delay the occurrence of web local buckling and restrain its propagation. Considering all these, it is concluded that the 1900mm-deep concrete-filled U-shaped composite beam investigated can be conservatively applied to C-OMFs. Finally, some useful recommendations for the arrangement and design of the horizontal stiffeners are also recommended based on the numerical results.