• Title/Summary/Keyword: Tides

Search Result 450, Processing Time 0.023 seconds

Winter Zonation of the Benthic Amphipods in the Sandy Shore Surf Zone of Dolsando, Southern Korea (돌산도 모래해안 쇄파대에 사는 저서성 단각류의 겨울철 대상분포)

  • SUH Hae-Lip;Yu Ok-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.340-348
    • /
    • 1997
  • Sledge net samples were taken over the neap and spring tide cycles in January 1993 from the bottom and surface of 1 m depth and at the water's edge in the sandy shore surf zone of Dolsando, southern Korea. Zonation pattern of three dominant gammarid amphipods was compared. The amphipods were more abundant on the bottom and at water's edge than in the surface. Average densities at both sites of Pontogeneia rostrata and Allorchestes angusta were higher during the neap tide than the spring tide, whereas that of Synchelidium lenorostralum was lower during the neap tide. P. rostrata migrated horizontally during the flooding and ebbing tides, but S. lenorostralum and A. angusta did not. Unlike other species, P. rostrata was significantly more abundant at night, suggesting its active nocturnal movement. During flooding tide, P. rostrata was not found on the shore above the mean sea level (MSL) during daytime, but found in 100 cm above MSL at night. Zonal distribution of P. rostrata which was restricted from MSL to 250 cm below MSL, however, did not vary with the day-night cycle during ebbing tide. S. lenorostralum and A. angusta were not found during flooding tide but ebbing tide. The upper distribution limit of the former was 150 cm below MSL, and the distribution of the latter ranged from MSL to 150 cm below MSL. The highest densities of P. rostrata, S. lenorostralum and A. angusta were 32, 26 and 3 ind. $m^{-2}$, respectively. We discussed the relationships between the distribution pattern of three dominant species of gammarid amphipods and their life styles in the sandy shore.

  • PDF

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Detection of Long Period Seismic Events by Using a Portable Gravity Meter, gPhone (이동식 중력계(gPhone)를 활용한 장주기 지진 이벤트 관측)

  • Lee, Won Sang;Seo, Ki-Weon;Eom, Jooyoung;Sheen, Dong-Hoon;Lee, Choon-Ki;Park, Yongcheol;Yun, Sukyoung;Yoo, Hyun Jae
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.1
    • /
    • pp.31-34
    • /
    • 2015
  • A gravity meter has been used for exploring subsurface mineral resources and monitoring long-period events such as Earth tides. Recently, researchers found several other intriguing features that we could even detect large teleseismic earthquakes and monitor seismic ambient noise using gravimeters. The zero-length spring suspension technology gives the gPhone (Micro-g LaCoste) excellent low frequency sensitivity, which may have implications for investigating much longer-period natural events (e.g., Earth's hum, tsunami waves, etc.). In this study, we present preliminary results through temporary operation of the gPhone at Geumsan in South Korea for 9 months (Nov. 2008-Jul. 2009). The gPhone successfully recorded large teleseismic events and showed a clear seasonal variation of the Double frequency microseisms during its operation period.

Signal Treatement for Topex/Poseidon Satellite Altimetric Data and Its Application near the Korean Seas (Topex/Poseidon위성 고도계 자료에 대한 신호처리 및 한반도 주변해역에 대한 그 적용)

  • Yoon, Hong-Joo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.1
    • /
    • pp.12-31
    • /
    • 1999
  • Topex/Poseidon satellite altimetric data are used to estimate characteristics on the oceanic and atmospheric correction factors, and the mean sea level and its variations in the Yellow Sea, the East China Sea and the East Sea from September 1992 through August 1994(70cycles). For the atmospheric correction factors, the variations of dry troposphere, humid troposphere, ionosphere and inverted barometer were very small as a few centimeters, but the variations of electromagnetic bias were higher than other factors. For the oceanic correction factors, the variations of ocean tide(35cm in track 127 and 60cm in track 214) showed high ranges compared to elastic tide(5cm in track 127 and 1cm in track 214) and loading tide(1.8cm in track 127 and 1cm in track 214). It should be understood that the variations of ocean free surface is mainly under the influence of, firstly, ocean tide and, secondly, electromagnetic bias. Mean sea level in the Yellow Sea are higher than in the rest of Seas. Then its range generally comprised between -60cm and 210cm with mean value of about 100cm. Also its variations showed high values in the Yellow Sea and East China Sea, especially 5.689cm in Youngampo. This result is mainly due to the effects of local topography and tidal current.

  • PDF

Evaluation of Tidal Stream Resources Near Uido Using an ADCIRC Model (ADCIRC 모델을 이용한 우이도 주변해역의 조류자원 평가)

  • Jeong, Haechang;Nguyen, Manh Hung;Kim, Bu-Gi;Kim, Jun-Ho;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.187-193
    • /
    • 2017
  • This study evaluated tidal stream energy resources according to tidal flow properties around Uido off the west coast of, Jeollanam-do, South Korea. A feasibility study was first carried out through the collection of bathymetry data and tidal phase information. For this simulation, a depth-averaged 2D ADCIRC (Advanced Circulation) model for real sea situations was applied to a Finite Element Method (FEM) approach for tides given the variation of tidal current speed. Hydrodynamics were simulated with 4 major tidal constituents (M2, S2, K1, and O1) after setting up 4 observation points. From the real depth-averaged model simulation results, it was found that the spring tide Higher High Water (HHW) and tidal current speed values at the 4 observation points were about 2.2 m and 1.33 m/s, respectively. The ADCIRC model results were analyzed with reference to the Korea Hydrographic and Oceanographic Agency's (KHOA) observed data for verification. Furthermore, using topographical characteristics via the Tidal Flux Method (TFM), tidal energy density distribution was calculated, indicating a maximum tidal energy density of about $1.75kW/m^2$ for the 5 assessment areas around Uido. The tidal energy density was evaluated with consideration given to topographical characteristics as well as tidal elevation and tidal current speed to determine an optimum tidal farm candidate.

A Study on the Tidal Energy Yield Capability according to the Yaw Angle in Jangjuk Strait (장죽수도에서의 요각변화에 따른 조류에너지 생산량에 관한 연구)

  • Tran, Bao Ngoc;Choi, Min Seon;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.982-990
    • /
    • 2019
  • The interest of researchers and governments in exploiting tidal energy resources is increasing. Jangjuk strait is a place with high tidal energy density potential and is therefore appropriate for the constructing of a tidal turbine farm. In this study, a numerical approach is presented to evaluate the current flow and power potential in Jangjuk strait with an ADCIRC model. Then, the tidal field characteristics are utilized as input parameters for tidal resource calculation with an in-house program. The 1 MW scale tidal energy converter devices are employed and arranged in 4 layouts to investigate the annual energy yield as well as flow deficit due to the wake ef ect at the surveyed area. The best-performed array generates an annual energy yield up to 12.96 GWh/year (without considering the wake effect); this value is reduced by 0.16 GWh/year when accounting for the energy loss caused by the flow deficit. Moreover, by altering the turbine yaw angle during the flood and ebb tides, the impacts of this factor on the energy extraction are analyzed. This indicates that the turbine array attains the maximum tidal power when the turbine yaw angle is at 346° and 164° (clockwise, to the North) for the spring and neap tide in turns.

Seismic Stratigraphy and Sedimentary Environment of the Dukjuk-Do Sand Ridge in Western Gyeonggi Bay, Korea (경기만 서부 덕적도 사퇴의 탄성파층서 및 퇴적환경 연구)

  • Lee, Yoon-Oh;Choi, Sang-Il;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.9-21
    • /
    • 2014
  • We examined high-resolution seismic data, side scan sonar data, surface sediments, and vibrocore samples from a sand ridge off the western part of Dukjuk-Do in Gyeonggi Bay, with the aim of interpretation of seismic stratigraphy and sedimentary environment. Based on the seismic data, the deposited sands are divided into three sedimentary units. 14C age data indicate that the top sequence (sequence I) formed at 5000-6000 yr BP, when a transgression resulted in strong shifting tides. Analyses of the vibrocore samples indicate that sequence II is a paleo-mudflat layer of intertidal sediments dominated by mud. Sequence III consists of terrestrial sediments that are presumed to have been deposited at the end of the Pleistocene, unconformably overlying the acoustic bedrock and Mesozoic granite. The side scan sonar data indicate that sand waves were formed on the seabed on top of the sand ridge. Generally, this is the direction of $N20^{\circ}E$, which coincides with the direction of tidal flow. Sand ripples occur away from the top of the sand ridge and are distributed homogeneously across a sandy slope. Vibrocore analyses indicate that the surface sediments and core sediments (samples VC-1, -2, and -3) are homogeneous, without any internal structures, and are characterized by a mixture of medium and fine sand (1-$2{\phi}$), respectively.

Development of a Three-Dimensional, Semi-Implicit Hydrodynamic Model with Wetting-and-Drying Scheme (조간대 처리기법을 포함한 3차원 Semi-Implicit 수역학모델 개발)

  • Lee, Kyung-Sun;Park, Kyeong;Oh, Jeong-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.70-80
    • /
    • 2000
  • Princeton Ocean Model (POM) is modified to construct a three-dimensional, semi-implicit hydro¬dynamic model with a wetting-and-drying scheme. The model employs semi-implicit treatment of the barotropic pressure gradient terms and the vertical mixing terms in the momentum equations, and the velocity divergence term in the vertically-integrated continuity equation. Such treatment removes the external mode and thus the mode splitting scheme in POM, allowing the semi-implicit model to use a larger time step. Applied to hypothetical systems, both the semi-implicit model and POM give nearly the same results. The semi-implicit model, however, runs approximately 4.4 times faster than POM showing its improved computational efficiency. Applied to a hypothetical system with intertidal flats, POM employing the mode splitting scheme produces noises at the intertidal flats, that propagate into the main channel resulting in unstable current velocities. Despite its larger time step, the semi-implicit model gives stable current velocities both at the intertidal flats and main channel. The semi-implicit model when applied to Kyeonggi Bay gives a good reproduction of the observed tides and tidal currents throughout the modeling domain, demonstrating its prototype applicability.

  • PDF

A Study on the Long-Term Variations of Annual Maximum Surge Heights at Sokcho and Mukho Harbors (속초와 묵호항의 연간 최대해일고의 장기간 변동성에 대한 고찰)

  • Kwon, Seok-Jae;Moon, Il-Ju;Lee, Eun-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.564-574
    • /
    • 2008
  • This study investigates a long-term variation of annual maximum surge heights(AMSH) and main characteristics of high surge events, which is influenced by the global warming and intensifying typhoons, using sea level data at Sokcho and Mukho tidal stations over 34 years ($1974{\sim}2007$). It is found that the there is a longterm uptrend of the AMSH at Sokcho (8.3 cm/34yrs) and at Mukho (8.7 cm/34yrs), which is significant within 95% confidence level based on the linear regression. The statistical analysis reveals that 53% of the AMSH occurs during typhoon's event in both tidal stations and the highest surge records are mostly produced by the typhoon. It is concluded that the uptrend in the AMSH is attributed by the increasing typhoon activities globally as well as locally in Korea due to the increased sea surface temperature in tropical oceans. The continuous efforts monitering and predicting the extreme surge events in the future warm environments are required to prevent the growing storm surge damage by the intensified typhoon.

Some physical characteristics of Gamak Bay observed in October and November of year 2004 (2004년 10월 및 11월에 관측된 가막만의 물리환경)

  • Lee, Moon-Ock;Kim, Byeong-Kuk;Park, Sung-Jin;Kim, Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.165-173
    • /
    • 2005
  • Field observations have been conducted to investigate the physical environment around oyster farms in Gamak Bay. Tidal waves near the two channels at the northeast and south of the bay had almost the same amplitudes and phases. Water temperature responded sensibly to the tides, rising at high water and falling at low water, except for the northwest region. The currents more regularly varied in accordance with a tidal period as long as they are at the faster-flowing region. A considerable flow has been found near the seabed of the northwest of the bay, normally known to be a stagnant area, and also the flow was opposite to the surface flow. Average moving speeds and directions of the flow at each station coincided well with patterns of the residual currents computed by Lee ef al. [2004], except for the northwest region. The discrepancy for the northwest region is not clear but it may have resulted from the facts that the computed flow pattern represents only the case of spring tide and in addition, a northwesterly wind prevailed all the observation time.

  • PDF