• Title/Summary/Keyword: Tides

Search Result 450, Processing Time 0.02 seconds

Laboratory Study for the Identification of Parameters affecting the Penetration Behavior of Spilled crude oil in a Coastal Sandy Beach (해양에서 유출된 기름의 해변 토양 침투거동에 미치는 영향인자 규명 실험)

  • Cheong Jo, Cheong
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 2003
  • Understanding the penetration behavior of the spilled oil is very important to remove itself and to minimize its impact on intertidal biological communities by earlier treatment of the oil. The purpose of this study is to clarify the effects of wave and tidal actions on the penetration of spilled oil and to evaluate main factors of oil penetration using a sandy-beach model. Infiltration processes into the sediments showed significant difference between seawater and crude oil. Seawater was infiltrated by both wave action and tidal fluctuation into the sediments in sandy beach. However, spilled crude oil penetrated into the sediments only by falling tides and not by wave action, and the first tide is most important for the penetration of stranded oil. Over 70% of bulk fraction in penetrated crude oil was concentrated to the top 2 cm sediment-layer when spilled oil volume was 1 L/$\textrm{m}^2$. Moreover, the penetration of stranded oil into the sandy beach sediments was strongly correlated with the oil viscosity affected by temperature.

Feeding by common heterotrophic protist predators on seven Prorocentrum species

  • You, Ji Hyun;Jeong, Hae Jin;Kang, Hee Chang;Ok, Jin Hee;Park, Sang Ah;Lim, An Suk
    • ALGAE
    • /
    • v.35 no.1
    • /
    • pp.61-78
    • /
    • 2020
  • Species belonging to the dinoflagellate genus Prorocentrum are known to cause red tides or harmful algal blooms. To understand the dynamics of a Prorocentrum sp., its growth and mortality due to predation need to be assessed. However, there are only a few Prorocentrum spp. for which heterotrophic protist predators have been reported. We explored feeding by the common heterotrophic dinoflagellates Gyrodinium dominans, Oxyrrhis marina, Pfiesteria piscicida, Oblea rotunda, and Polykrikos kofoidii and the naked ciliate Strombidinopsis sp. (approx. 90 ㎛ cell length) on the planktonic species Prorocentrum triestinum, P. cordatum, P. donghaiense, P. rhathymum, and P. micans as well as the benthic species P. lima and P. hoffmannianum. All heterotrophic protists tested were able to feed on the planktonic prey species. However, O. marina and O. rotunda did not feed on P. lima and P. hoffmannianum, while G. dominans, P. kofoidii, and Strombidinopsis sp. did. The growth and ingestion rates of G. dominans and P. kofoidii on one of the seven Prorocentrum spp. were significantly different from those on other prey species. G. dominans showed the top three highest growth rates when it fed on P. triestinum, P. cordatum, and P. donghaiense, however, P. kofoidii had negative growth rates when fed on these three prey species. In contrast, P. kofoidii had a positive growth rate only when fed on P. hoffmannianum. This differential feeding on Prorocentrum spp. between G. dominans and P. kofoidii may provide different ecological niches and reduce competition between these two common heterotrophic protist predators.

Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum

  • Lee, Kyung Ha;Jeong, Hae Jin;Yoon, Eun Young;Jang, Se Hyeon;Kim, Hyung Seop;Yih, Wonho
    • ALGAE
    • /
    • v.29 no.2
    • /
    • pp.153-163
    • /
    • 2014
  • Mesodinium rubrum is a cosmopolitan ciliate that often causes red tides. Predation by heterotrophic protists is a critical factor that affects the population dynamics of red tide species. However, there have been few studies on protistan predators feeding on M. rubrum. To investigate heterotrophic protists grazing on M. rubrum, we tested whether the heterotrophic dinoflagellates Gyrodiniellum shiwhaense, Gyrodinium dominans, Gyrodinium spirale, Luciella masanensis, Oblea rotunda, Oxyrrhis marina, Pfiesteria piscicida, Polykrikos kofoidii, Protoperidinium bipes, and Stoeckeria algicida, and the ciliate Strombidium sp. preyed on M. rubrum. G. dominans, L. masanensis, O. rotunda, P. kofoidii, and Strombidium sp. preyed on M. rubrum. However, only G. dominans had a positive growth feeding on M. rubrum. The growth and ingestion rates of G. dominans on M. rubrum increased rapidly with increasing mean prey concentration < $321ngCmL^{-1}$, but became saturated or slowly at higher concentrations. The maximum growth rate of G. dominans on M. rubrum was $0.48d^{-1}$, while the maximum ingestion rate was 0.55 ng C $predator^{-1}d^{-1}$. The grazing coefficients by G. dominans on populations of M. rubrum were up to $0.236h^{-1}$. Thus, G. dominans may sometimes have a considerable grazing impact on populations of M. rubrum.

Host-Parasite System in a Red Tide Dinoflagellate Prorocentrum minimum: (1) Life Cycle Stages of the Parasitic Dinoflagellate Amoebophrya sp. (적조생물 Prorocentrum minimum의 숙주-기생자 배양체: (1) 기생성 와편모류 Amoebophrya sp.의 생활사 단계)

  • 김영길;박명길;이원호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.2221-2221
    • /
    • 2002
  • The first laboratory culture of host-parasite system of Prorocentrum minimum- Amoebophrya sp. was established by single cell isolation method. Here, we report the life cycle stages of the parasitic dinoflagellate. Amoebophrya sp. of the red tide dinoflagellate P. minimum as observed by light and epifluorescence microscopy. Infections developed inside the nucleus of P. minimum. The trophont developed to occupy almost all the intracellular space of the host at its late stage. The fully developed trophont finally ruptured through the host cell. “Vermiform stage”, the free-swimming extracellular lift cycle stage is followed by another stage for the sudden release of many individual dinospores. Our laboratory strain of the host-parasite system for P. minimum, a causative species fur the huge red tides in spring and summer in Korean coastal waters, could be a useful living material for the in situ biological control of harmful algal blooms.

Host-Parasite System in a Red Tide Dinoflagellate Prorocentrum minimum:(1) Life Cycle Stages of the Parasitic Dinoflagellate Amoebophrya sp. (적조생물 Prorocentrum minimum의 숙주-기생자 배양체: (1) 기생성 와편모류 Amoebophrya sp.의 생활사 단계)

  • 김영길;박명길;이원호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.221-225
    • /
    • 2002
  • The first laboratory culture of host-parasite system of Prorocentrum minimum- Amoebophrya sp. was established by single cell isolation method. Here, we report the life cycle stages of the parasitic dinoflagellate. Amoebophrya sp. of the red tide dinoflagellate P. minimum as observed by light and epifluorescence microscopy. Infections developed inside the nucleus of P. minimum. The trophont developed to occupy almost all the intracellular space of the host at its late stage. The fully developed trophont finally ruptured through the host cell. “Vermiform stage”, the free-swimming extracellular lift cycle stage is followed by another stage for the sudden release of many individual dinospores. Our laboratory strain of the host-parasite system for P. minimum, a causative species fur the huge red tides in spring and summer in Korean coastal waters, could be a useful living material for the in situ biological control of harmful algal blooms.

A Warning and Forecasting System for Storm Surge in Masan Bay (마산만 국지해일 예경보 모의 시스템 구축)

  • Han, Sung-Dae;Lee, Jung-Lyul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.131-138
    • /
    • 2009
  • In this paper, a dynamic warning system to forecast inland flooding associated with typhoons and storms is described. The system is used operationally during the typhoon season to anticipate the potential impact such as inland flooding on the coastal zone of interest. The system has been developed for the use of the public and emergency management officials. Simple typhoon models for quick prediction of wind fields are implemented in a user-friendly way by using a Graphical User Interface (GUI) of MATLAB. The main program for simulating tides, depth-averaged tidal currents, wind-driven surges and currents was also vectorized for the fast performance by MATLAB. By pushing buttons and clicking the typhoon paths, the user is able to obtain real-time water level fluctuation of specific points and the flooding zone. This system would guide local officials to make systematic use of threat information possible. However, the model results are sensitive to typhoon path, and it is yet difficult to provide accurate information to local emergency managers.

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

Structural stability analysis of jellyfish blocking net using numerical modeling (수치모델링을 활용한 해파리 차단 그물의 안정성 해석)

  • LEE, Gun-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.1
    • /
    • pp.19-31
    • /
    • 2022
  • Damages by jellyfish are occurring frequently around the world. Among them, accidents caused by jellyfish stings are serious enough to cause death. So we designed a jellyfish blocking net and analyzed its stability to prevent sting caused by jellyfish entering the beach. To this end, the dynamic behavior of the jellyfish blocking net according to the current speed (0.25-1.0 m/s) and the net type (50, 100 and 150 mm) on the upper part of the blocking net was modeled using the mass spring model. As a result of simulations for the model, the horizontal tension (horizontal component of the mooring tension) of the mooring line increased with the decrease in the mesh size on the upper part of the blocking net at all current speeds, but exceeded the holding force at high tides faster than 0.5 m/s and exceeded the holding force at all current speeds at low tide. Therefore, the jellyfish blocking nets showed poor stability overall. The depth of the float line had a little difference according to the upper mesh size and increased lineary proportional to the current speed. However, the float line sank too much to block the incoming jellyfish. These analysis results helped us find ways to improve the stability of the jellyfish blocking net, such as adjusting the length of the mooring line and improving the holding power. Therefore, it is expected that this technology will be applied us various underwater structures to discover the weaknesses of the structures and contribute to increasing the stability in the future.

Time-series Analysis of Seawater Temperature in the Garolim Bay, the West Coast of Korea (서해 가로림만 수온의 시계열 분석)

  • Yang, Joon-Yong;Cho, Sunghee;Lee, Joon-Soo;Han, Changhoon;Heo, Seung
    • Journal of Environmental Science International
    • /
    • v.30 no.7
    • /
    • pp.585-595
    • /
    • 2021
  • We used seawater temperature data, measured in the Garolim Bay, to analyze temperature variation on an hourly and daily basis. Lagrange's interpolation using before and after data was applied to restore nonconsecutive missing temperature data. The estimated error of the data restoration was 0.11℃. Spectral analyses of seawater temperature showed significant periodicities of approximately 12.4 h (semidiurnal tide) and 15.0 d (long-period tide), which is close to those of M2 and Mf partial tides. Variation in seawater temperature was correlated more with tidal height than with air temperature around the Garolim Bay. In June and December, when the seawater temperature difference between the inside and outside of the Garolim Bay was very large, the periodicities of 12.4 h and 15.0 d were highly prominent. These results indicate that the exchange of seawater between the inside and outside of the Garolim Bay induced variations in seawater temperature owing to tide. Understanding temperature variation because of tide helps to prevent abnormal mortality of cultured fish and to predict seawater temperature in the Garolim Bay.

Possibility of Inland Navigation Downstream of the Singok Weir in the Han River (한강 신곡수중보 하류 하구부에서의 선박 통행 가능성)

  • Won, Kim;Chaewoong, Ban;Myounghwan, Kim;Doohan, Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.1
    • /
    • pp.20-30
    • /
    • 2023
  • This study analyzed the possibility of inland navigation in the Han river mouth, from Singok weir to the junction of Gongleung Stream. As a result of analysis using recent survey data and water level data, it was found that the number of days that a 250 - 400 ton class vessel can operate in the Han river estuary is less than 119 days per year. In the case of a 400 - 1,500 ton class vessel, it was found that only about 47 days per year can be operated. In this region, even in the absence of large-scale floods, the river bed continues to change significantly due to strong tides, indicating that there are limitations in securing a stable waterway. Therefore, for stable inland navigation, it is judged that continuous investigation and analysis of the possibility and stability of waterways are necessary.