• Title/Summary/Keyword: Tide effect

Search Result 264, Processing Time 0.03 seconds

Applicability of Inundation Simulation with the Coupled Tide-Surge Model (조석-해일 결합모형의 범람 적용성)

  • Park, Seon-Jung;Kang, Ju-Whan;Yoon, Jong-Tae;Jung, Tae-Sung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.270-278
    • /
    • 2010
  • Applicability of the MIKE21 model as a real time coupled tide-surge model had been examined at the previous study. In this study, another applicability of the model as an inundation model is also examined. Prior to real cases, effect of artificial structures on the inundation is analyzed. The results show that inundation depth is not altered, while inundation area is lessened as a result of decreased inundation speed. Comparative study between the coupled model and an uncoupled storm surge model is also carried out at the Masan coastal zone, which shows the coupled model is considered to be plausible at the time to maximum inundation, while both models show similar results at the inundation area and inundation depth.

On the Variation of Sea Level Due to Meteorological Disturbances on the Coast of Korea. I. Storm Surges Caused by Typhoon Billie, 1970, on the West and South Coasts of Korea (한국연안에 있어서 기상 교란에 의한 해면변화 I. 태풍 빌리호(1970년)와 남 서해안의 이상고조현상)

  • Hwang, Chin-Pung
    • 한국해양학회지
    • /
    • v.6 no.2
    • /
    • pp.92-98
    • /
    • 1971
  • Storm surges caused by typhoon Billie, 28 Aug. ∼ 2 Sep. 1970, on the west and south coasts of Korea are studied with the tidal data. Tracks and frequencies of the typhoons which affected the Korean peninsula and the yearly maximum tidal deviation at tide stations for the past twelve years are also reviewed. It is assumed that most of the typhoons affecting the Korea peninsula cause variations of sea level along almost all of the coast of Korea. Maximum storm surges at each tide station on the south coast appeared to be caused by typhoons during the summer, and by the north westerly monsoon and extraordinary cyclones on the west coast during spring and winter. In the coastal waters of the west coast where depths are shallower and the bottom configuration is flat, sea level variation is mostly caused by atmospheric pressure and wind effect. When a typhoon travels as in case of typhoon Billie, sea level ascends generally on the south coast and it descends on the west coast before the typhoon approaches near to the coasts. Considering the large tidal range on the western and southern coasts, it is assumed that the extraordinary destructive surges can be occurred when the tide is high water. Reviewing the monthly mean sea level variations on the each coast, hazards to be caused by storm surges can more fluently occur during the summer.

  • PDF

A Sensitivity Test on the Minimum Depth of the Tide Model in the Northeast Asian Marginal Seas (동북아시아 조석 모델의 최소수심에 대한 민감도 분석)

  • Lee, Ho-Jin;Seo, Ok-Hee;Kang, Hyoun-Woo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.457-466
    • /
    • 2007
  • The effect of depth correction in the coastal sea has been investigated through a series of tide simulations in the area of $115{\sim}150^{\circ}E,\;20{\sim}52^{\circ}N$ of northwestern Pacific with $1/12^{\circ}$ resolution. Comparison of the solutions varying the minimum depth from 10m to 35 m with the 5m interval shows that the amplitude accuracies of $M_2,\;S_2,\;K_1$ tide using the minimum depth of 25 m have been improved up to 42%, 32%, 26%, respectively, comparing to those using the minimum depth of 10m. The discrepancy between model results using different minimum depth is found to be up to 20 cm for $M_2$ tidal amplitude around Cheju Islands and the positions of amphidromes are dramatically changed in the Bohai Sea. The calculated ARE(Averaged Relative Error) values have been minimized when the bottom frictional coefficient and the minimum depth is 0.0015 and 25 m, respectively.

HABs Research Project Management Model (적조연구프로젝트 관리모형에 관한 연구)

  • 어윤양;김창완;이현규
    • The Journal of Fisheries Business Administration
    • /
    • v.34 no.2
    • /
    • pp.165-183
    • /
    • 2003
  • The effect of red tide on the marine ecological system is so severe that many researches on the diverse subjects related to it have been conducted. Notwithstanding the enormous efforts and inputs the results of the past researches show no clear ways to deal with the HAB problems. As many researches are being conducted, the efficient and appropriate research project management systems as one of the critical factors for successful research are also needed as well as the fund and the capabilities of the researchers. It is assumed that the development of the evaluation and management systems for red tide research projects is so important and critical to enhance the researches and to utilize efficiently the physical and human resources for research. In this respect this study aims to present the evaluation and management scheme for the red tide researches that can not only decide the priority of the research subjects and tell the desirable research directions, but also support to develop the useful managerial policies and guidelines for the policy maker. The main subjects dealt with in this study are as follows : the characteristics of the HAB researches, the basic attributes and criterion of the research evaluation systems, the structure and design of the evaluation systems, and the development of the managerial policies by the type of the evaluation system. The conceptual scheme developed in this study is expected to be applied to the related areas and can suggest to the policy makers so many implications for identifying and setting the proper policy objects and management techniques. This study has a couple of weak points. It suggests only the conceptual scheme but not the applications so that the researches focusing on the applications in practical perspectives are needed to follow.

  • PDF

Sea Level Variabilities in the East Asian Marginal Seas by Topex/Poseidon Altimeter Data (Topex/Poseidon 고도계자료를 이용한 동북아시아 연변해역의 해수면 변화 연구)

  • Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1190-1194
    • /
    • 2001
  • The first 7 years of altimeter data from the TOPEX/POSEIDON(T/P) were analyzed to study the surface circulation and its variability in the East Asian Marginal Seas. Long term averaged T/P sea level time series data where compared with in situ sea level measurements from a float-operated type tide gauge around of south Korea and Japan. T/]P data are a large contaminated by 60-day tidal aliasing effect, very near the alias periods of M2 and 52. When this 60-day effect is removed, the data agree well with the tide gauge data with 4.6 cm averaged RMS difference. The T/P derived sea level variability reveals clearly the well-known, strong current-topography such as Kuroshio. The T/P mean sea level of North Pacific(NP) was higher than Yellow Sea(YS) and East Sea(ES). The T/P sea level variability, with strong eddy and meandering, was the largest in eastern part of Japan and this variability was mainly due to the influence of bottom topography in Kuroshio Extension area.

  • PDF

Seasonal Variation of Coastal Front by Numerical Simulation in the Southern Sea of Korea (수치모델을 이용한 한국 남해안 전선의 계절변동)

  • Bae, Sang-Wan;Kim, Dong-Sun
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1141-1149
    • /
    • 2011
  • The three-dimensional hydrodynamic model was simulated to understand coastal sea front of formation and seasonal variation in the Southern Sea of Korea. In this study, we used to concept of stratification factor, to realize seasonal distribution of stratification coefficient which of seasonal residual flow, considered with, tide, wind and density effect. Tidal current tends to flow westward during the flood and eastward during ebb. The current by the wind stress showed to be much stronger the coastal than the offshore area in the surface layer. And the current by the horizontal gradient of water density showed to be relatively weak in the coastal area, with little seasonal differences. On the other hand, the flow in the offshore area showed results similar to that of the Tsushima Warm Current. The stratification factor (SHv) was calculated by taking into account the total flow of tide, wind and density effect. In summer, the calculated SHv distribution ranged from 2.0 to 2.5, similar to that of the coastal sea front. The horizontal temperature gradient showed to be strong during the winter, when the vertical stratification is weak. On the other hand, the horizontal gradient became weak in summer, during which vertical stratification is strong. Therefore, it is presume that the strength of vertical stratification and the horizontal temperature gradient affect the position of the coastal sea front.

Application and Analysis of the Steady State Spectral Wave Model for Coastal Waters at Busan New Port Site (부산신항만수역에서 정상상태 스펙트럼 파랑모델의 적용 및 분석)

  • 이학승;이우철;황호동;양상용;이중우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.157-164
    • /
    • 2003
  • Introduction of wave model, considered the effect of tide, wind and wave induced currents at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster protection problems. As the steady state spectral wave model could simulate depth induced wave shoaling and refraction, current induced refraction effect, steepness induced wave breaking, diffraction, wind wave growth, and wave-wave interaction that redistribute energy, this would support and compensate the gap in the real field of design where other wave models could not deal and cause wrong estimation. In this study, for that sense, we applied the spectral wave model t the large coastal waters near Gaduck Island where the Busan new port construction project is going on, for better understanding and analysis of wave transformation process. We also compared the simulation results with the calculated from the existing model. From such a trial of this study, we hope that broader and sager use of the spectral model in the area of port design and disaster prevention system come through in near future.

  • PDF

THE EFFECT OF SURFACE METEOROLOGICAL MEASUREMENTS ON PRECISION GPS HEIGHT DETERMINATION

  • Wang Chuan-Sheng;Liou Yuei-An;Wang Cheng-Gi
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.178-181
    • /
    • 2005
  • The positioning accuracy of the Global Positioning System (GPS) has been improved considerably during the past two decades. The main error sources such as ionospheric refraction, orbital uncertainty, antenna phase center variation, signal multipath, and tropospheric delay have been reduced substantially, if not eliminated. In this study, the GPS data collected by the GPS receivers that were established as continuously operating reference stations by International GNSS Service (IGS), Ministry of the Interior (MOl), Central Weather Bureau (CWB), and Industrial Technology Research Institute (ITRI) Of Taiwan are utilized to investigate the impact of atmospheric water vapor on GPS positioning determination. The surface meteorological measurements that were concurrently acquired by instruments co-located with the GPS receivers include temperature, pressure and humidity data. To obtain the influence of the GPS height on the proposed impact study. A hydrodynamic ocean tide model (GOTOO.2 model) and solid earth tide were used to improve the GPS height. The surface meteorological data (pressure, temperature and humidity) were introduced to the data processing with 24 troposphere parameters. The results from the studies associated with different GPS height were compared for the cases with and without a priori knowledge of surface meteorological measurements. The finding based on the measurements in 2003 is that the surface meteorological measurements have an impact on the GPS height. The associated daily maximum of the differences is 1.07 cm for the KDNM station. The impact is reduced due to smoothing when the average of the GPS height for the whole year is considered.

  • PDF

Three-Dimensional Numerical Experiment on the Tide-Induced Residual Currents around a Circular Island (원형섬 주변 조사 잔차류에 대한 삼차원 수치실험연구)

  • 이호진;최현용;정종률
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.338-349
    • /
    • 1993
  • Most of numerical models for studying tide-induced residual currents (TIRC) were to dimensional depth averaged models which were confined to anlayze the horizontal structure of TIRC. In this study, TIRC occurring around a circular island was simulated with the three-dimensional spectral model which employed by the finite difference method in the horizontal direction and the expansion of basis function in the vertical direction. The main results of numerical experiment can be summarized as follows. Firstly. both topographic and nonlinear effect played an important role in the generation of TIRC. Secondly, when the currents were rotary clockwise. the horizontal structure of TIRC appeared to rotate in the same direction. These results were consistent with those of previous studies of two-dimensional numerical models.

  • PDF

Satellite-detected red tide algal blooms in Korean and neighboring waters during 1999-2004

  • Ahn Yu-Hwan;Shanmugam Palanisamy
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.95-100
    • /
    • 2006
  • Measurements of ocean color from space since 1970s provided vital information with reference to physical and biogeochemical properties of the oceanic waters. The utility of these data has been explored in order to map and monitor highly toxic/or harmful algal blooms (HABs) that affected most of coastal waters throughout the world due to accelerated eutrophication from human activities and certain oceanic processes. However, the global atmospheric correction and bio-optical algorithms developed for oceanic waters were found to yield false information about the HABs in coastal waters. The present study aimed to evaluate the potential use of red tide index (RI) method, which has been developed by Ahn and Shanmugam (2005), for mapping of HABs in Korean and neighboring waters. Here we employed the SSMM to remove the atmospheric effect in the SeaWiFS image data and the achieved indices by RI method were found more appropriate in correctly identifying potential areas of the encountered HABs in Korean South Sea (KSS) and Chinese coastal waters during 1999-2004. But the existence of high absorbing and scattering materials greatly interfered with the standard OC4 algorithm which falsely identified red tides in these waters. In comparison with other methods, the RI approach for the early detection of HABs can provide state managers with accurate identification of the extent and location of these blooms as a management tool.

  • PDF