• Title/Summary/Keyword: Tide cycle

Search Result 82, Processing Time 0.025 seconds

Experimental Studios on the Mechanism of Reproductive Cycle in the Longchin Goby Chasmichthys dolichognathus (HILGENDORF) (점망둑, Chasmichthys dolichognathus의 생식기구에 관한 실험적 연구)

  • BAEK Hea Ja;LEE Taek Yuil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.243-252
    • /
    • 1985
  • The mechanism of reproductive cycle of longchin goby Chasmichthys dolichognathus was investigated for the annual variations of gonadosomatic index(GSI), histological changes of gonad, reproductive cycle, and initiating and terminating factors of the breeding season. The experimental fish were captured in the tide pool of Tongbaeksom, Pusan, Korea from February 1983 to September 1984. Experimental fish for the study of initiating and terminating factors of the breeding season were maintained in filtered recirculating aquariums and exposed to various temperature and photoperiod regimes. The ovary is a pair of sac-shaped organ, and the testicular structure is tubular and it is connected to the seminal vesicle which is located at the posterior end of the testis. GSI began to increase from February when the water temperature began to increase and reached peak in April. It began to decrease from August, the top water temperature season, and maintained relatively low values until January. The annual reproductive cycle includes successive six developmental stages : early growing from December to February, late growing from January to March, early mature from February to May, late mature and ripe from March to August, spawning from April to July, degeneration and resting stage from May to December. An experimental study based on the reproductive cycle of this species indicated that rising temperature under long photoperiod during spring stimulated gonadal maturation, whereas terminating factor of the breeding season with recrudescence of the gonads was demonstrated as high water temperature during summer regardless of photoperiod.

  • PDF

The Cross-Sectional Characteristic and Spring-Neap Variation of Residual Current and Net Volume Transport at the Yeomha Channel (경기만 염하수로에서의 잔차류 및 수송량의 대조-소조 변동과 단면 특성)

  • Lee, Dong Hwan;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.217-227
    • /
    • 2017
  • The object of this study is to estimate the net volume transport and the residual flow that changed by space and time at southern part of Yeomha channel, Gyeonggi Bay. The cross-section observation was conducted at the mid-part (Line2) and the southern end (Line1) of Yeomha channel for 13 hours during neap and spring-tides, respectively. The Lagrange flux is calculated as the sum of Eulerian flux and Stokes drift, and the residual flow is calculated by using least square method. It is necessary to unify the spatial area of the observed cross-section and average time during the tidal cycle. In order to unify the cross-sectional area containing such a large vertical tidal variation, it was necessary to convert into sigma coordinate system by horizontally and vertically for every hour. The converted sigma coordinate system is estimated to be 3~5% error when compared with the z-level coordinate system which shows that there is no problem for analyzing the data. As a result, the cross-sectional residual flow shows a southward flow pattern in both spring and neap tides at Line2, and also have characteristic of the spatial residual flow fluctuation: it northwards in the main line direction and southwards at the end of both side of the waterway. It was confirmed that the residual flow characteristics at Line2 were changed by the net pressure due to the sea level difference. The analysis of the net volume transport showed that it tends to southwards at $576m^3s^{-1}$, $67m^3s^{-1}$ in each spring tide and neap tide at Line2. On the other hand, in the control Line1, it has tendency to northwards at $359m^3s^{-1}$ and $248m^3s^{-1}$. Based on the difference between the two observation lines, it is estimated that net volume transport will be out flow about $935m^3s^{-1}$ at spring tide stage and about $315m^3s^{-1}$ at neap tide stage as the intertidal zone between Yeongjong Island and Ganghwa Island. In other words, the difference of pressure gradient and Stokes drift during spring and neap tide is main causes of variation for residual current and net volume transport.

Modeling Sedimentation of Fine-grained Sediments in a Rectangular Basin (장방형 해분내의 세립 퇴적물 퇴적모형)

  • Hyo Jin Kang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.1
    • /
    • pp.38-44
    • /
    • 1991
  • A simple box model was applied to the sedimentation of fine-grained sediments in a rectangular basin. Using the model explanation of the net depositional process of One-grained sediments in a small tide-dominated rocky embayment was possible by a careful evaluation of coefficients for erosion and deposition. For a basin with an inlet through which the exchange of suspended sediments occurs between open sea. the model shows that the time-averaged concentration of suspended sediments for a tidal cycle reaches a steady state initial abrupt change in concentration. During a tidal cycle deposition of sediments seems to occur when the magnitude of tidal currents is substantially low near the slack waters. Resuspension and erosion of bottom sediments take place near the peak of tidal currents. For a depositional basin. Gamagyang Bay, the duration and the maximum rate of deposition appear to be longer and higher than those of erosion. which accounts for the net deposition of fine-grained sediments. The time-averaged concentration of suspended sediment in the basin is slightly lower than that of the open water due to the net deposition. The instantaneous concentration of suspended sediments showed the maximum value about an hour before high water and the minimum about an hour after low water.

  • PDF

The Spatial Characteristics of Vertical Accretion Rate in a Coastal Wetland - In case of Sunchon bay estuarine marsh, south coast of Korea - (해안습지 성장률의 공간적 특성에 관한 연구 - 순천만 염하구 해안습지를 사례로 -)

  • Park, Eui-Joon
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.3
    • /
    • pp.153-168
    • /
    • 2000
  • An estuarine marsh is semi -inclosed inlets, located between coastal and terrestrial environment. The sediment transport by river and tide through tidal river and vertical accretion by sediment accumulation are important processes in estuarine marsh. An analysis of the vertical accretion rate at various time scale is important work for understanding and managing coastal environments. The purpose of this study is to determin the spatial characteristics of vertical accretion rate in an estuarine marsh, Sunchon Bay, in the southern coastal region of Korean peninsula. The methods of analysis are sedimentation rate by individual tidal cycle, annual accretion rate, concentration of total suspended load in water column. Spatial characteristics of sedimentation rate by individual tidal cycle was investigated using 30 filter paper traps. Sedimentation rate by individual tidal cycle at levee edge was higher than that at back marsh. The sedimentation rate decreased with distance from estuarine front. Levee effect and proximity to the turbidity maximum zone result in a higher sedimentation rate in the levee edge. There is a weak relation-ships between tidal regime and sedimentation rate by individual tidal cycle. Spatial cahracteristics of annual accretion rate was investigared using 30 artificial marker plots. Annual accretion rate at back marsh($1.5{\sim}3.5cm/yr$) was higher than that at tidal river levee edge($0.8{\sim}3.0cm/yr$). Total suspended load (TSL) concentrations in water column also indicate this spatial characteristics of annual accretion rate. TSL concentration in water column leaving the vegetation part dramatically decreased. There is a very strong relationship between the concentration of suspended load and accretion rate. These results indicate that annual accretion rate is controlled by vegetation cover and proximity to the turbidity maximum zone. This difference of spatial characteristics of vertical accretion rate ar various time-scale was due to the fact that surface sediment of levee edge was eroded by tide and other factors. The major findings are as follows. First, the spatial characteristics of vertical accretion rate are different from various time-scale. Second, the major mechanism for the vertical accretion rate in this region is suspended load trapping by vegetation. Third, this region is primarily a depositional regime over the time-scale of the present data Fourth, this estuarine marsh is accreting at rates beyond other area.

  • PDF

Methodology for Risk Assessment for Exposure to Hurricane Conditions

  • Edge, Billy L.;Jung, Kwang-Hyo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-49
    • /
    • 2012
  • An analysis of potential flooding by storm surge and wave run-up and overtopping can be used to evaluate protection afforded by the existing storm protection system. The analysis procedure can also be used to evaluate various protection alternatives for providing typhoon flood protection. To determine risk, the storm surges for both historical and hypothetical are compiled with tide conditions to represent high, slack and low water for neap, spring and mid range tides to use with the statistical procedure known as the Empirical Simulations Technique (EST). The EST uses the historic and hypothetical events to generate a large population of life-cycle databases that are used to compute mean value maximum storm surge elevation frequency relationships. The frequency-of-occurrence relationship is determined for all relevant locations along the shoreline at appropriate locations to identify the effect using the Empirical Storm Simulation (EST). To assist with understanding the process, an example is presented for a study of storm surge analysis for Freeport, Texas. This location is in the Gulf of Mexico and is subject to hurricanes and other tropical storms that approach from the Atlantic Ocean.

Bed Changes downstream the Singok Submerged Weir in the Han River Estuary - from 2009 to 2010 (한강 하구 신곡수중보 하류에서 하상변동 - 2009년부터 2010년까지)

  • Hwang, Seung-Yong;Lee, Samhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.819-829
    • /
    • 2018
  • The bed change survey was carried out and its tendency was analyzed at the downstream of the Singok Submerged Weir in the Han River Estuary (HRE). In order to focus on the bed change in the low flow channel, we calculated the mean bed elevation based on the bankfull discharge. Thanks to the amount of bed changes calculated by using the 'averaged bed', we could compare the riverbeds of various periods with consistent criteria. In the HRE, revealed was the bed change cycle between degradation by flood and aggradation by tide at the non-flood season.

Numerical Simulation of the Formation of Oxygen Deficient Water-masses in Jinhae Bay (진해만의 빈산소 수괴 형성에 관한 수치실험)

  • CHOI Woo-Jeung;PARK Chung-Kill;LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.413-433
    • /
    • 1994
  • Jinhae Bay once was a productive area of fisheries. It is, however, now notorious for its red tides; and oxygen deficient water-masses extensively develop at present in summer. Therefore the shellfish production of the bay has been decreasing and mass mortality often occurs. Under these circumstances, the three-dimensional numerical hydrodynamic and the material cycle models, which were developed by the Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the oxygen depletion and also to evaluate the environment capacity for the reception of pollutant loads without dissolved oxygen depletion. In field surveys, oxygen deficient water-masses were formed with concentrations of below 2.0mg/l at the bottom layer in Masan Bay and the western part of Jinhae Bay during the summer. Current directions, computed by the $M_2$ constituent, were mainly toward the western part of Jinhae Bay during flood flows and in opposite directions during ebb flows. Tidal currents velocities during the ebb tide were stronger than that of the flood tide. The comparision between the simulated and observed tidal ellipses showed fairly good agreement. The residual currents, which were obtained by averaging the simulated tidal currents over 1 tidal cycle, showed the presence of counterclockwise eddies in the central part of Jinhae Bay. Density driven currents were generated southward at surface and northward at the bottom in Masan Bay and Jindong Bay, where the fresh water of rivers entered. The material cycle model was calibrated with the data surveyed in the field of the study area from June to July, 1992. The calibrated results are in fairly good agreement with measured values within relative error of $28\%$. The simulated dissolved oxygen distributions of bottom layer were relatively high with the concentration of $6.0{\sim}8.0mg/l$ at the boundaries, but an oxygen deficient water-masses were formed within the concentration of 2.0mg/l at the inner part of Masan Bay and the western part of Jinhae Bay. The results of sensitivity analyses showed that sediment oxygen demand(SOD) was one of the most important influence on the formation of oxygen depletion. Therefore, to control the oxygen deficient water-masses and to conserve the coastal environment, it is an effective method to reduce the SOD by improving the polluted sediment. As the results of simulations, in Masan Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $50\%$ reduction in input COD loads from Masan basin and $70\%$ reduction in SOD was conducted. In the western part of Jinhae Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $95\%$ reduction in SOD and $90\%$ reduction in culturing ground fecal loads was conducted.

  • PDF

Fluctuation of Tidal Front and Expansion of Cold Water Region in the Southwestern Sea of Korea (한국 남서해역에서 조석전선의 변동과 저수온역 확장기작)

  • Jeong, Hee-Dong;Kwoun, Chul-Hui;Kim, Sang-Woo;Cho, Kyu-Dae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.289-296
    • /
    • 2009
  • The appearance and variation of cold water area and its expansion mechanism of tidal front in the south western coast of Korea in summer were studied on the basis of oceanographic data(1966-1995), satellite images from NOAA and SeaWiFs and numerical model. Cold water appearance in southwestern field of Jindo was due to the vertical mixing by strong tidal current. Tidal front where horizontal gradient of water temperature was more than $0.3^{\circ}C$/km parallels to contours of H/$U^3$ parameter 2.0~2.5 and the outer boundary of cold water region corresponds with contours of the parameter 2.5~3.0 in the southwestern sea of Korea during the period between neap and spring tides. The position replacement of tidal front formed in the study ares varies in a range of 25~75km and cold water region extends about 90km. These suggest that the magnitude of variation of frontal position and cold water area was proportionate to the tidal current during lunar tidal cycle. Moreover, it was estimated that the southwestward expansion of cold water region was derived from the southwestward tide-induced residual currents with speed more than 10cm/s.

  • PDF

Analysis of Tidal Asymmetric Characteristics in the Muan Bay (무안만의 조석비대칭적 특성 분석)

  • Kang, Ju Whan;Kim, Yang Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.170-179
    • /
    • 2020
  • Tidal asymmetry would occur owing to shallow water tides at the Western Coast of macro tidal area. Especially, as ebb dominance of Mokpo coastal zone is known as the most prominent in Korea, it had been studied by domestic researchers. The cause of ebb dominance in Mokpo area is considered due to extensive inter-tidal zone in Muan Bay, and this has been studied based on amplification ratio, relative phase and skewness of tide/tidal flow curves in order to analyze qualitative tidal asymmetry. Furthermore, it was possible to figure out tidal characteristics with the difference of tidal amplitude and phase with Mokpo Harbor by observing the tide for 15 days in Muan Bay, which showed 40 minutes shorter ebbing time than at Mokpo Harbor. In addition, tidal flow prediction data in Mokpo North Harbor and Mokpo-Gu were analyzed. Meanwhile, the basis regarding qualitative interpretation of bed sediment and suspended sediment was provided by examining the qualitative changes in tidal asymmetry for spring-neap tidal cycle through the PCA/SWA indices. In addition, by examining long-term changes of ebb dominance in Mokpo Port, tidal characteristics of the past, present and future in this area, which is related to tidal asymmetry, is also provided.

Seasonal Variations of Sedimentary Processes on Mesotidal Beach in Imjado, Southwestern Coast of Korea (한반도 서해남부 임자도 해빈 퇴적작용의 계절적 변화)

  • 류상옥;장진호;조주환;문병찬
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.83-92
    • /
    • 2004
  • A continuous monitoring of textural characteristics of surface sediments, sedimentation rates and beach profile was carried out to investigate the seasonal variations of sedimentary processes in the Imjado beach, southwestern coast of Korea for two years. The beach profiles consist of steep beach face and relatively flat middle and low tide beaches. The slope of the beach face increases in summer and decreases in winter, in good accordance with the standard beach cycle. Ridge and runnel systems are well developed in the middle and low tide beaches during the summer, but these structures are replaced by mega-ripples during the winter. The sediments are fining southward as well as landward. The mean grain-size tends to be increasingly coarser during seasons of autumn and winter on the north beach and during seasons of winter and spring on the south one. In addition, the sediments are eroded on the north beach and accumulated on the south one as a whole. These are probably due to southward transportation of the sediments as long-shore current (NE-SW) runs around the coastal line of the beach. However, the seasonal variations in accumulation rates are very complex and irregular. It is considered that the Imjado beach represents in non-equilibrium state, as a result of coastal and submarine topographic changes by artificial agents and sea-level uprising associated with global warming.