• Title/Summary/Keyword: Tide and Current

Search Result 352, Processing Time 0.034 seconds

Seasonal Variations of Sedimentary Processes on Mesotidal Beach in Imjado, Southwestern Coast of Korea (한반도 서해남부 임자도 해빈 퇴적작용의 계절적 변화)

  • 류상옥;장진호;조주환;문병찬
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.83-92
    • /
    • 2004
  • A continuous monitoring of textural characteristics of surface sediments, sedimentation rates and beach profile was carried out to investigate the seasonal variations of sedimentary processes in the Imjado beach, southwestern coast of Korea for two years. The beach profiles consist of steep beach face and relatively flat middle and low tide beaches. The slope of the beach face increases in summer and decreases in winter, in good accordance with the standard beach cycle. Ridge and runnel systems are well developed in the middle and low tide beaches during the summer, but these structures are replaced by mega-ripples during the winter. The sediments are fining southward as well as landward. The mean grain-size tends to be increasingly coarser during seasons of autumn and winter on the north beach and during seasons of winter and spring on the south one. In addition, the sediments are eroded on the north beach and accumulated on the south one as a whole. These are probably due to southward transportation of the sediments as long-shore current (NE-SW) runs around the coastal line of the beach. However, the seasonal variations in accumulation rates are very complex and irregular. It is considered that the Imjado beach represents in non-equilibrium state, as a result of coastal and submarine topographic changes by artificial agents and sea-level uprising associated with global warming.

Spatio-Temporal Variations of Harmful Algal Blooms in the South Sea of Korea

  • Kim, Dae-Hyun;Denny, Widhiyanuriyawan;Min, Seung-Hwan;Lee, Dong-In;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.475-486
    • /
    • 2009
  • Harmful algal blooms (HAB) caused by the dominant species Cochlodinium polykrikoides (C. polykrikoides) appear in the South Sea of Korea and are particularly present in summer and fall seasons. Environmental factors such as water temperature, weather conditions (air temperature, cloud cover, sunshine, precipitation and wind) influence on the initiation and subsequent development of HAB. The purpose of this research was to study spatial and temporal variations of HAB in the Yeosu area using environmental (oceanic and meteorological) and satellite data. Chlorophyll-a concentrations were calculated using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) images by an Ocean Chlorophyll 4 (OC4) algorithm, and HAB were estimated using the Red tide index Chlorophyll Algorithm (RCA). We also used the surface velocity of sequential satellite images applying the Maximum Cross Correlation method to detect chlorophyll-a movement. The results showed that the water temperature during HAB occurrences in August 2002-2008 was $19.4-30.2^{\circ}C$. In terms of the frequency of the mean of cell density of C. polykrikoides, the cell density of the HAB found at low (<300 cells/ml), medium (300-1000 cells/ml), and high (>1000 cells/ml) levels were 27.01%, 37.44%, and 35.55%, respectively. Meteorological data for 2002-2008 showed that the mean air temperature, precipitation, wind speed and direction, and sunshine duration were $22.39^{\circ}C$, 6.54 mm/day, 3.98 m/s (southwesterly), and 1-11.7 h, respectively. Our results suggest that HAB events in the Yeosu area can be triggered and extended by heavy precipitation and massive movement of HAB from the East China Sea. Satellite images data from July to October 2002-2006 showed that the OC4 algorithm generally estimated high chlorophyll-a concentration ($2-20\;mg/m^3$) throughout the coastal area, whereas the RCA estimated concentrations at $2-10\;mg/m^3$. The surface velocity of chlorophyll-a movement from sequential satellite images revealed the same patterns in the direction of the Tsushima Warm Current.

Water Column Structure and Dispersal Pattern of Suspended Particulate Matter (SPM) in a floating ice-dominated fjord, Marian Cove, Antarctica during Austral Summer (유빙이 점유한 남극 마리안 소만의 하계기간 수층 구조와 부유물질 분산)

  • Yoo, Kyu-Cheul;Yoon, Hoo-Il;Kang, Cheon-Yun;Kim, Boo-Keun;Oh, Jae-Kyung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.295-304
    • /
    • 2000
  • Vertical measurement of CTDT at about 30 min intervals and spatial surface temperature, salinity, and concentration of suspended particulate matters were conducted to elucidate the character of water column and the dispersal pattern in a floating ice-dominated fjord, Marian Cove, West Antarctica. Marian Cove showed two distinct water layers in terms of turbidity; 1) cold, fresh, and turbid surface plume in the upper 2 m,2) warm, saline, and relatively clean Maxwell Bay inflow between 15-45 m in water depth. Thermal melting of Maxwell Bay inflow and tidewater glacier/floating ices developed the surface mixed layer and the activity of floating ices cause Maxwell Bay inflow to be unstable. Due to the unstable water column, the development of Maxwell Bay inflow and subsequent surface plume are not influenced by tidal frequency. Coastal current generated by strong northwesterly wind may extend warm, saline, and turbid surface plume into the central part of the cove along the northern coast via the western coast of Weaver Peninsula. Terrigenous sediments of meltwaters from the glaciated ice cliffs near the corner of tidewater glacier and some coasts enter into the cove and their dispersion depends upon the hydrographic regimes (tide, wind, wave etc.). At the period of spring tide, the strong wind stress with the northwesterly wind direction reserve suspended sediment-fed surface plume and so allow the possibility of deposition of terrigenous sediments within the basin of cove.

  • PDF

500-days Continuous Observation of Nutrients, Chlorophyll Suspended Solid and Salinity in the Keum Estuary, Korea (금강 하구역에서 영양염류, 엽록소, 부유물질과 염분변화에 대한 500일간의 연속관측)

  • Lee, Yong-Hyuk;Yang, Jae-Sam
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • We have monitored nutrients, chlorophyll, suspended solids, and salinity in the Keum Estuary to understand the temporal fluctuation of oceanographic parameters and to illustrate any variation due to the gate operation of the Keum River Dike from June, 1995 to September, 1996, approximately for 500 days. Tidal range is used as the key factor to explain the fluctuations and atmospheric parameters such as air temperature, wind velocity and rainfall are also used supplementally. The fresh water discharge was selected as another major impact on the estuarine environment due to the gate operation of the Keum Dike. In addition, daily variation by tidal cycle was investigated twice in April and July, 1996. In diurnal variation, salinity was positively correlated with tidal elevation, whereas negatively correlated with nutrients. Relatively high suspended solid and chlorophyll contents were found in the period between high and low tide. In 500 days continuous observations, salinity was negatively correlated with the volume of fresh-water discharge, but positively correlated with nutrients. A major chlorophyll bloom occurred in spring. A similar pattern of variation was observed between suspended solid and the neap-spring tidal cycle. In comparison with the data of the Keurn Estuary before the gate operation of the Keum River dike, fresh-water discharge predominated other environmental factors during the rainy season. In addition, the velocity of tidal current and the concentration of suspended solid were decreased, while nutrients and chlorophyll contents were increased.

  • PDF

A Study on the Salinity Variation of Salt Water in an Estuary (하구(河口)의 해수(海水)의 염도변동(鹽度變動)에 관한 연구(研究) - 군산외항(群山外港)부근을 중심(中心)으로 -)

  • Lee, Jong Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1981
  • Since the estuary is a very complex place in which the sea water and the fresh water meet, it is very difficult to make a general analytical description of salinity distribution in the estuary. As an attempt to investigate the characteristics of salinity variation in the estuary of the Geum River, the field observations were continuously carried out at three points near the Gunsan New Harbor at the time intervals 1 to 1.5 hours during one tidal cycle and the data were analysed. The following results were obtained; 1. It was reconfirmed that most of the ratios of the salinity to the conductivity were widely distributed between the range of 0.5 to 1.0. 2. The salinity showed the peak at the high water, and then it began to decrease gradually and had the lowest value 0 to 2 hours after the low water. 3. The density current was generally the intense mixing type and when the river discharge was very large it was of the moderate type. 4. The vertical salinity distribution was not significantly affected by the wave height. 5. The maximum vertical salinity differences were generally less than 10 g/l and the time of the occurrence of the minimum value was 0 to 3 hours after the low water when in the spring tide and in the neap tide it occurred 2 to 3 hours after the high water.

  • PDF

Tidal and Sub-tidal Current Characteristics in the Central part of Chunsu Bay, Yellow Sea, Korea during the Summer Season (서해 천수만 중앙부의 하계 조류/비조류 특성)

  • Jung, Kwang Young;Ro, Young Jae;Kim, Baek Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.53-64
    • /
    • 2013
  • This study analyzed the ADCP records along with wind by KMA and discharge records at Seosan A-, B-district tide embankment by KRC for 33 days obtained in the Chunsu Bay, Yellow Sea, Korea spanning from July 29 to August 30, 2010. Various analyses include descriptive statistics, harmonic analysis of tidal constituents, spectra and coherence, complex correlation, progressive vector diagram and cumulative curves to understand the tidal and sub-tidal current characteristics caused by local wind and discharge effect. Observed current speed ranges from -30 to 40 (cm/sec), with standard deviation from 1.7 (cm/sec) at bottom to 18.7 (cm/sec) at surface. According to the harmonic analysis results, the tidal current direction show NNW-SSE. The magnitudes of semi-major axes range from 9.4 to 14.8 (cm/sec) for M2 harmonic constituent and from 4.4 to 7.0 (cm/sec) for S2, respectively. And the magnitudes of semi-minor axes range from 0.1 to 0.5 (cm/sec) for M2 and from 0.4 to 1.4 (cm/sec) for S2, respectively. In the spectral analysis results in the frequency domain, we found 3~6 significant spectral peaks for band-passed wind and residual current of all depth. These peak periods represent various periodicities ranging from 2 to 8 (days). In the coherency analysis results between band-passed wind and residual current of all depth, several significant coherencies could be resolved in 3~5 periodicities within 2.8 (days). Highest coherency peak occurred at 4.6 (day) with 1.2-day phase lag of discharge to band-passed residual current. The progressive vector of wind and residual current travelled to northward at all layers, and the travel distance at middle layer was greater than surface layer distance. The Northward residual current was caused by a seasonal southern wind, and the density-driven current formed by fresh water input effected southward residual current. The sub-tidal current characteristics is determined by seasonal wind force and fresh water inflow in the Chunsu Bay, Yellow Sea, Korea.

Identifying Three-Dimensional Hydraulic Characteristics of the Sea Region Under Combined Tidal Current and Shock Waves (조류와 충격파가 혼재한 해역의 3차원적 수리특성 분석)

  • Kang, Min Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.339-346
    • /
    • 2009
  • In this study, the flow characteristics of the sea region, where tidal current and shock waves are combined, are identified using a three-dimensional numerical model (Princeton Ocean Model, POM). The model is adopted and applied for simulating the flows of the sea region near the open sections during the seadike closure work of Sihwa Seadike which was closed in 1994. The simulation results show that the shock waves with high velocities propagate through the sections toward the inside and outside of the seadike during the periods of the spring and ebb tides, respectively. It is found that the phenomena of flow separation occur near the shock waves; as the shock waves extend to wider zones after passing the sections, their effects on the tidal current become weak. In addition, the longitudinal velocity profiles of the flows are revealed to be affected by the shock waves. For all the simulations, at the ebb tide, the drawdown of the water levels occurs in front of the open section, respectively, especially, hydraulic jump occurs when simulating the case of maximum difference in water level between the inside and outside of the seadike. As a result, it is thought that the flow characteristics of the sea region dominated by shock waves need to be identified employing three-dimensional analysis approach, which is expected to provide the information for ocean engineering works and facility management.

Analysis on the volume variation of bag-net in set-net by acoustic telemetry (음향 텔레메트리에 의한 정치망 원통의 체적 변화 해석)

  • Tae, Jong-Wan;Shin, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.115-125
    • /
    • 2004
  • An experiment to measure the volume variation of bag net in a set-net by acoustic telemetry system was conducted in Jaran Bay, Gosung, Korea on 10 April to 23 April 2003. The long baseline telemetry system consists of three radio-acoustic linked positioning (RAP) buoys, a time controller with a personal computer and seven pingers. Six pingers were attached on the bottom of the bag-net and the other one was fixed on the sea bed. The results obtained are summarized as follows : 1. The average RAP buoy fixing errors of x-axis, y-axis, and z-axis were 0.2m, 0.4m, and 0.1m, respectively. 2. In the neap tide the minimum and maximum volume of the bag-net on 11 April 2003 were 4,173$m^3$(17:00) and 4,757$m^3$(12:00), respectively. The average current direction and speed at those times were 99.9$^{\circ}$, 12.9cm/s and 104.0$^{\circ}$, 2.4cm/s, respectively. 3. In the spring tide on 17 April 2003, the minimum and maximum volume were 2,016$m^3$(18:30) and 4,454$m^3$(15:00), respectively. The average current direction and speed at those times were 315.6$^{\circ}$, 16.1cm/s and 289.0$^{\circ}$, 5.7cm/s, respectively. 4. In conclusion the maximum variation of the volume on 17 April to 20 April 2003 was 3,552$m^3$ and it was larger 1.4 times than time on 11 April to 16 April 2003.

A Study on the Movement Distribution of Common Grey Mullet, Mugil cephalus in Funnel Net Fishing Ground of the Yeosu Coastal Sea (여수 연안 승망 어장에서 숭어의 이동 분포에 관한 연구)

  • Kim, Dong-Soo;Joo, Chan-Soon;Park, Ju-Sam
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • In order to find out the environmental factors influencing movement of common grey mullet, Mugil cephalus in funnel net fishing ground of the Dolsan-do, Yeosu southern sea area, the oceanographic factor such as the water temperature, isobath and tidal current were observed respectively, the water temperature was compared with the amount of common grey mullet caught by funnel net. Also, to investigate the movement direction of common grey mullet in same sea area, 160 common grey mullets of body length 22 to 51cm caught at funnel nets of the Dolsan-do southern sea area were marked and then released at 5 positions in 5 times. The results obtained are summarized as follows : 1. The water temperature at the funnel net fishing ground of Dolsan-do in 2002 was ranged from 6.9 to 27.4$^{\circ}C$. The water temperature was displayed a maximum value in August to increase from March and a minimum value in February of the ensuing year to decrease from September. The catches of gray mullet caught by funnel net were generally abundant from March to September, but decreased sharply from October. The optimum range of water temperature for the funnel nets fishing was situated between 15.0 to 25.0$^{\circ}C$. 2. The isobath from 6m to 13m in coast sea set up funnel nets were densely distributed and the depth more than 14m of isobath were widely spreaded to the open sea at Dolsan-do southern sea area. 3. The tidal current of the coast sea set up funnel nets flowed southward and northward along the coast ato ebb and flood tide respectively. The direction of tidal current to the open sea was southeast at ebb tide with the mean speed 43cm/sec, but northwest at flood with the mean speed 25cm/sec. 4. The recapture rate through the experiment duration showed 9.4%. The recapture rate in Gyedong area was very high value with 33.3% as compared with others. The movement of common grey mullet in Dolsan-do southern sea area trended toward a inner bay and north bound mainly.

Study of the Tidal Discharge (조석출입량에 관한 조사)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.1
    • /
    • pp.1394-1408
    • /
    • 1968
  • The tidal discharge is defined as the quantity of water flowing through a certain cross-section per unit of time, in contrast to river discharges, tidal discharges change periodically in magnitude and direction. Thus the total volumes of water flowing into again out of the system-called flood volume and ebb volume, respectively, depend on both the tidal and the river discharges. To ditermine the tidal discharge and the flood and ebb volumes of the Yong-san river, the discharges were measured at spring, mean and neap tide and simultaneous gage reading were taken at Samhak-do, Lower Myo-do, Myongsan-ni and Naju. The general procedure for measuring the tidal discharges was as follows. First, several cross-sections were measured and one of them was chosen. First, several cross-sections were measured and one of them was chosen. Then verticals were serected in the chosen cross section. Because comparatively few verticals should be representative of the discharge distribution over the river profile, the selection was done in accordance with the somtimes irregular bottom profile. The velocities were measured with the same current meters. The observations which included water level readings were continued for a period of about 13 hours. The current direction meter, a pyramid shaped resistance body, suspend in the water on a thin wire. The bubble in a circular tilting level fixed to the wire indicates the direction of the current. Reading were taken at intervals of 1m for depths of 10m or less, and for depths over 10m at intervals of 2m, going downwards and upwards. The averages of the two velocities were used for the computation of the discharges. The discharges and the flood and ebb volumes were ditermined by a graphical method. The mean velocities, corrected for their direction when necesary, were ditermined for each time interval and each vertical, and these velocities were plotted against the time. The resulting curves show possible mistakes very clearly, and the effect of observation errors could be reduced. The corrected velocities read from the curve at half-hour intervals were multiplied by the depth at the virtical at the corresponding time. The discharges thus found were ploted against the position of the vertical in the transit and joined by a smooth curve, integration of the curve rendered the total discharges as they occurred of half-hour intervals. Plotting these total discharges against the time yeilded during the day. The flood and ebb volumes were obtained by integration of the total discharge curve.

  • PDF