• Title/Summary/Keyword: Tide and Current

Search Result 352, Processing Time 0.028 seconds

Analysis of Wave Parametric Characteristics using WAVEWATCH-III Model and Observed Buoy Data (파랑모델과 부이 자료를 이용한 파랑인자 특성 분석)

  • 장유순;서장원;김태희;윤용훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.274-284
    • /
    • 2003
  • The analysis of wave parametric characteristics in sea regions in the vicinity of Korean Peninsula have been carried out using the third generation wave model, WAVEWATCH-III (Tolman, 1999) and four observed buoy data of Korea Meteorological Administration (KMA). Significant wave height increases about 2-3 hours later after the increase of wind speed. Maximum correlation coefficient between two parameters appears in Donghae buoy data, which is at off-shore region. When land breeze occurs, it can be found that the correlation coefficient decreases. Time differences between wind speeds and wave heights correspond to significant tidal periods at all of the buoy locations except for Donghae buoy. After verifying the WAVEWATCH-III model results by the comparing with observed buoy data, we have carried out numerical experiments near the Kuroshio current and East Sea areas, and then reconfirmed that when there exist an opposite strong current in the propagation direction of the waves or wind direction, wave height and length get higher and shorter, respectively and vice versa. It has been shown that these modulations of wave parameters are considerable when wind speed is week or mean current is relatively strong, and corresponding values have been represented.

Structural stability analysis of jellyfish blocking net using numerical modeling (수치모델링을 활용한 해파리 차단 그물의 안정성 해석)

  • LEE, Gun-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.1
    • /
    • pp.19-31
    • /
    • 2022
  • Damages by jellyfish are occurring frequently around the world. Among them, accidents caused by jellyfish stings are serious enough to cause death. So we designed a jellyfish blocking net and analyzed its stability to prevent sting caused by jellyfish entering the beach. To this end, the dynamic behavior of the jellyfish blocking net according to the current speed (0.25-1.0 m/s) and the net type (50, 100 and 150 mm) on the upper part of the blocking net was modeled using the mass spring model. As a result of simulations for the model, the horizontal tension (horizontal component of the mooring tension) of the mooring line increased with the decrease in the mesh size on the upper part of the blocking net at all current speeds, but exceeded the holding force at high tides faster than 0.5 m/s and exceeded the holding force at all current speeds at low tide. Therefore, the jellyfish blocking nets showed poor stability overall. The depth of the float line had a little difference according to the upper mesh size and increased lineary proportional to the current speed. However, the float line sank too much to block the incoming jellyfish. These analysis results helped us find ways to improve the stability of the jellyfish blocking net, such as adjusting the length of the mooring line and improving the holding power. Therefore, it is expected that this technology will be applied us various underwater structures to discover the weaknesses of the structures and contribute to increasing the stability in the future.

Study of the Tidal Channels Appeared on SAR Images

  • Kim, Tae-Rim;Park, Jong-Jib;Choi, Byoung-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.501-505
    • /
    • 2009
  • Quasi-linear bright features persistently appeared on ENVISAT ASAR images as well as X-SAR images along the tidal channels in Gyung-Gi Bay, Korea during the ebb tides. These features are induced by spatial backscatter variations caused by surface convergence (divergence) through the interaction between tidal currents and bathymetry. In order to validate this mechanism, a numerical tidal model simulation is performed on the realistic bathymetry with the tidal boundary conditions. The tide model reproduces the current convergence zone along the tidal channel during the ebb tides, which exactly coincides with the location of bright line features on SAR images.

Analysis of Tide and Tidal Current in Namhae Coastal Waters (남해 주변해역의 조석과 조류분포 해석)

  • Kim, Cha Kyum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.425-428
    • /
    • 2019
  • 본 연구에서는 남해 주변해역의 조석과 조류의 구조특성을 해석하기 위해 현장관측결과와 수치실험결과를 이용하였다. 남해 주변해역의 해수유동은 2003년~2008년 사이 노량수로, 대방수로, 여수수로, 창선수로, 강진만, 앵강만에서 ADCP 및 RCM 9 유속계를 사용하여 각 정점에서 1개월 정도 연속측류를 하였다. 노량수로와 대방수로에서는 ADCP를 사용하여 표층에서 저층까지 3m 간격으로 측류하였고, 여수수로, 창선수로, 강진만과 앵강만에서는 RCM-9 유속계를 사용하여 표층에서 연속 측류하였다. 노량수로 상층에서 동-서 방향의 최대 유속은 약 165~175 cm/sec, 대방수로에서는 창 낙조류 최대유속은 약 200~270 cm/sec, 여수수로에서는 약 85~96 cm/sec 정도 나타났다. 강진만의 표층에서 최대유속의 크기는 창 낙조류 비슷하게 35~46 cm/sec, 앵강만 입구 부근에서 낙 창조류 최대유속은 20~22 cm/sec으로 발생하였다. 또한, 조류수치모형실험을 수행하여 남해 주변해역의 조류분포 특성을 전반적으로 해석하였다.

  • PDF

Tidal Current in the Western Part of Deukryang Bay in Summer 1992 (1992년 하계 득량만 서부해역의 조류 특성)

  • LEE Jae Chul;RHO Hong-Kil;CHO Kyu-Dae;SHIN Sang-Il;KIM Sang-Woo;KIM Sang-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 1995
  • A recording current meter was deployed in the shallow western part of Deukryang Bay from 1 July to 7 August 1992 during which the wind was weak. Principal component in NNE-SSW direction parallel to the axis of the bay had $98.7\%$ of the total variance and the orthogonal component of only $1.3\%$. Spectral analysis of the principal component revealed that the semidiurnal component comprised about $91.2\%$ of total energy. Whereas the diurnal and longer components were less than $2.5\%$ the shallow water tide was about $6.3\%$ . Weak mean current of 0,8cm/sec in SSE direction implies that the slow circulation in the bay is counterclockwise having the northward net flow in the deep eastern part.

  • PDF

Analysis of a Change of Hydrodynamic Environments due to the Port Developments in the Intertidal Zone (조간대 발달영역에서 개발에 따른 유동환경변화 해석)

  • Jung, Jae-Hyun;Lee, Joong-Woo;Jeong, Young-Hwan;Jun, Sung-Hwan;Kim, Kang-Min
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.689-695
    • /
    • 2007
  • The under developing estuarial port Bupsung is bounded by a river and the sea, and has several well developed tidal lands, where the littoral drift is strong due to the tide and the river discharge. The study area is located at the inner part of a concave bay and has a large tidal range due to the water discharge through the Watan-chun and Junnam-dike. In beginning stage of the ocean physical impact study, the tidal modeling is very important and difficult especially in this area. Moreover, we need a model experiment after the verification of the formulated model based on ocean survey. In this study, we constructed a numerical model to the Bupsung port coastal boundaries, which varies with the past and future development and made simulation with it. The result after development shows that there is a decrease of velocity on flood current and a increase on Ebb current and the minor variation of the tide level, compared with before development.

Assessment and Improvement of Documentation Status on the Statements for the Sea Area Utilization Consultation according to the Project of Ports and Fishery Harbors (항만·어항개발사업의 해역이용협의서 작성실태 평가 및 개선방안)

  • Tac, Dae-Ho;Oh, Hyun-Taik;Kim, Gui-Young;Lee, Dae-In
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.361-371
    • /
    • 2015
  • This study analyzed the 91 cases of the statements for the Sea Area Utilization Consultation according to the developmental projects of ports and fishery harbors for 2012 2014 and the status of the record of document, and suggested the improvement way to go. The marine environmental timpact assessment items both marine chemistry such as water quality, sediment and marine biology such as benthic animal, plankton, and fisheries show highly rate of site survey. But, the utilization of those data through site survey is too low, and it is necessary to adopt the QA/QC for the reliability of survey data. The items of marine physics such as tide, tidal current analyzed based on references not a site survey. However, the simulation performed actively without calibration and verification compared to the result of site survey. When the projects of port and fishery harbor perform, it is necessary to monitor the physical parameter such as wave, tide and tidal current especially. Based on the scale and the type of project, we need introduce the system of scoping for prediagnosis the key assessment items and checklists.

Satellite-altimeter-derived East Sea Surface Currents: Estimation, Description and Variability Pattern (인공위성 고도계 자료로 추정한 동해 표층해류와 공간분포 변동성)

  • Choi, Byoung-Ju;Byun, Do-Seong;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.225-242
    • /
    • 2012
  • This is the first attempt to produce simultaneous surface current field from satellite altimeter data for the entire East Sea and to provide surface current information to users with formal description. It is possible to estimate surface geostrophic current field in near real-time because satellite altimeters and coastal tide gauges supply sea level data for the whole East Sea. Strength and location of the major currents and meso-scale eddies can be identified from the estimated surface geostrophic current field. The mean locations of major surface currents were explicated relative to topographic, ocean-surface and undersea features with schematic representation of surface circulation. In order to demonstrate the practical use of this surface current information, exemplary descriptions of annual, seasonal and monthly mean surface geostrophic current distributions were presented. In order to objectively classify surface circulation patterns in the East Sea, empirical orthogonal function (EOF) analysis was performed on the estimated 16-year (1993-2008) surface current data. The first mode was associated with intensification or weakening of the East Korea Warm Current (EKWC) flowing northward along the east coast of Korea and of the anti-cyclonic circulation southwest of Yamato Basin. The second mode was associated with meandering paths of the EKWC in the southern East Sea with wavelength of 300 km. The first and second modes had inter-annual variations. The East Sea surface circulation was classified as inertial boundary current pattern, Tsushima Warm Current pattern, meandering pattern, and Offshore Branch pattern by the time coefficient of the first two EOF modes.

On the Wintertime Wind-driven Circulation in the Yellow Sea and the East China Sea : Part I. Effect of Tide-induced Bottom Friction (황해.동중국해의 겨울철 취송 순환에 대하여: Part I. 조류에 의한 저면 마찰력의 영향)

  • Lee, Jong-Chan;Kim, Chang-Shik;Jung, Kyung-Tae;Jun, Ki-Cheon
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.361-371
    • /
    • 2003
  • The effect of bottom friction on the steady wind-driven circulation in the Yellow Sea and the East China Sea (YSECS) has been studied using a two-dimensional numerical model with and without tidal forcing. Upwind flow experiment in YSECS has also been carried out with a schematic time variation in the wind field. The surface water setup and circulation pattern due to steady wind forcing are found to be very sensitive to the bottom friction. When the effects of tidal currents are neglected, the overall current velocities are overestimated and eddies of various sizes appear, upwind flow is formed within the deep trough of the Yellow Sea, forming a part of the topographic gyre on the side of Korea. When tidal forcing is taken into account, the wind-induced surface elevations are smoothed out due to the strong tide-induced bottom friction, which is aligned almost normal to the wind stresses; weak upwind flow is farmed in the deep trough of the Yellow Sea, west and south of Jeju. Calculation with wind forcing only through a parameterized linear bottom friction produces almost same results from the calculation with $M_2$ tidal forcing and wind forcing using a quadratic bottom friction, supporting Hunter (1975)'s linearization of bottom friction which includes the effect of tidal current, can be applied to the simulation of wind-driven circulation in YSECS. The results show that steady wind forcing is not a dominant factor to the winter-time upwind flow in YSECS. Upwind flow experiment which considers the relaxation of pressure gradient (Huesh et al. 1986) shows that 1) a downwind flow is dominant over the whole YSECS when the northerly wind reaches a maximum speed; 2) a trend of upwind flow near the trough is found during relaxation when the wind abates; 3) a northward flow dominates over the YSECS after the wind stops. The results also show that the upwind flow in the trough of Yellow Sea is forced by a wind-induced longitudinal surface elevation gradient.

Hydrography and Circulation in the Youngsan River Estuary in Summer, 2000 (2000년 여름 영산강 하구의 해수 특성과 순환)

  • Cho, Yang-Ki;Cho, Cheol;Sun, Youn-Jong;Park, Kyung-Yang;Park, Lae-Hwan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.218-224
    • /
    • 2001
  • Water movement in the Young San River Estuary where a sea dyke was constructed, was observed using anacoustic doppler profiler (ADP) and two TGPS buoys for 25 hours on 27-28 July 2000. Hydrographic observations were simultaneously taken using CTD to understand the characteristic of the spacial structure of temperature and salinity. A large quantity of fresh water was discharged from the sea dyke on 26 July 2000. The observation period fell on neap tide. The amplitude of the tidal elevation and the maximum velocity of the tidal current were about 4 m and 12 cm/sec respectively. The water movement at the surface layer is mainly controlled by wind, and those at the other layers are controlled by semidiurnal tide. The low salinity water less than 22 psu was observed along the northern part during the early observation period while southerly wind prevails. The less saline water moves westward and finally leaves the estuary by easterly wind early on the second day. We can divide the vertical structure into four layers by hydrography and current structure. Mean velocity structure shows that relatively less saline waters at the surface and the middle layer move seaward, and the waters at the upper and the bottom layers move landward. It is thought that the intermittent discharge of river water from the sea dyke makes vertical structure of four layers.

  • PDF