• Title/Summary/Keyword: Tide and Current

Search Result 352, Processing Time 0.026 seconds

Depth Contours Appeared on SAR Images by Interactions Between Tidal Currents and Bottom Topography

  • Kim, Tae-Rim
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.415-419
    • /
    • 2006
  • X-SAR images taken on the coastal waters of Hwanghe province in Korea during SIR-C/X-SAR campaign in April and October 1994 are analysed. The SAR images show the peculiar signatures like nail marks, curved long string, and vortex street patterns and they all seem to be produced by strong interactions between the topography in the coastal waters and tidal currents. The nail mark signatures are located at the same position of small scaled sand banks and the curved line patterns are almost identical to the outer boundary of large sand banks. Based on the tidal records, all the three images are taken at the almost same phase of tidal cycles, which are close to the low tide. It seems that bottom shapes are more strongly appeared on the SAR images when the tidal currents are slow. The front between two different current velocities caused by the flows along the steep boundaries of sandbanks is also the main factors imprinting the bottom features to the sea surface SAR images.

Tide and Tidal Currents Around the Archipelago on the Southwestern Waters of the South Sea, Korea (한국 남서해 다도해역의 조석·조류 특성)

  • Choo, Hyo-Sang;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.582-596
    • /
    • 2013
  • In order to estimate the tide and flow properties around the archipelago, around Dolsan, Choyak, Geogeom and Jindo which located in the southwestern waters of the south sea of Korea, tidal currents, residual flows and tidal energy dissipation were investigated by using 2-dimensional numerical model. The maximum speeds of tidal currents are small around Dolsando(31.92 cm/s) and large around Jindo(87.55 cm/s). The residual flow is fastest around Choyakdo where many channels and islands as compared with other study areas. The area around Jindo has the highest currents speed, but shows the flat movements. The margins between the maximum and the minimum dispersion rates of tidal energy in the areas are estimated and designate the order of values around Dolsando($392.6{\times}10^7$ erg/s), Geogeumdo($125.7{\times}10^7$ erg/s) and Jindo($23.1{\times}10^7$ erg/s) sequently. These circumstances are same as in the amplitude of M2 constituent. This means that rapid depth changes and narrow channels play an important role in tide and tidal currents energy in archipelago.

The Application of Lagrangian Particle-Tracking Method to Modelling of Oil-Spill Dispersion (라그랑지안 입자추적법에 의한 유출유 확산모델링)

  • 정연철
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.1
    • /
    • pp.73-83
    • /
    • 1997
  • To predict the oil-spill dispersion in marine waters, the oil-spill dispersion model based on Lagrangian particle-tracking method was developed and applied to Kwangyang and Jinju Bay. The tidal current movements to be required as input data of the oil-spill dispersion model were obtained by a two-dimensional numerical tidal model. Evaluation of tidal current movements using mean tide was successful. Modelling results were compared with the field data obtained at spill site. There were some descrepancies between modeling results and field data. However, the general pattern of modelling results was similar to that of field data. Provided the real-time tidal currents and more accurate wind data are supported, more favorable results can be obtained.

  • PDF

Characteristics of tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea (여자만 서수도 해역의 조류 및 조석평균류 특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.3
    • /
    • pp.252-263
    • /
    • 2019
  • In order to understand the tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea, numerical model experiments and vorticity analysis were carried out. The currents flow north at flood and south at ebb respectively and have the reversing form in the west channel. Topographical eddies are found in the surroundings of Dunbyong Island in the east of the channel. The flood currents flow from the waters near Naro Islands through the west channel and the coastal waters near Geumo Islands through the east channel. The ebb currents from the Yeoja Bay flow out along the west and the east channels separately. The south of Nang Island have weak flows because the island is located in the rear of main tidal stream. Currents are converged at ebb and diverged at flood in the northwest of Jeokgum Island. Tidal current ellipses show reversing form in the west channel but a kind of rotational form in the east channel. As the results of tide induced mean flows, cyclonic and anticyclonic topographical eddies at the northern tip but eddies with opposite spin at the southern tip are found in the west channel of Yeoja Bay. The topographical eddies around the islands and narrow channels are created from the vorticity formed at the land shore by the friction between tidal currents and the west channel.

Characteristic of In Situ Suspended Particulate Matter at the Gwangyang bay Using LISST-100 and ADCP (LISST-100과 ADCP를 이용한 광양만 현장 부유입자물질 특성 연구)

  • Lee, Byoung-Kwan;Kim, Seok-Yun
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1299-1307
    • /
    • 2009
  • In order to measure in-situ suspended particle size, volume concentration of suspended particulate matter and current speed, mooring observation was performed at the Gwangyang Bay by using of an optical instrument, 'LISST-100' and an acoustic instrument, 'ADV'(St. S1). And the sediment flux was obtained based on the concentration of suspended particulate matter and current speeds measured at three lines of Gwangyang Bay during ebb and flood tide of August 2006. To investigate the spatial variation of suspended particulate matter, profiling observations were measured difference echo intensity and beam attenuation coefficient by using of ADCP and Transmissometer (Line A, B, C). The suspended sediment flux rate at the mouth of Gwangyang Bay was observed to be higher during asymmetrical than symmetrical of current speeds. The flux of suspended particulate matter concentration and current speeds were transported to southeastern direction of surface layer and northwestern direction of bottom layer at the western area at line A of Gwangyang Bay. Small suspended particles have been found to increase attenuation and transmission more efficiently than similar large particles using acoustic intensity (ADV/ADCP) or optical transmit coefficient (LISST-100/Transmissometer). The application and problems as using optical or acoustic instruments will be detected for use in time varying calibrations to account for non-negligible changes in complex environments in situ particle dynamics are poorly understood.

Analysis of Seawater Transport based on Field Measurements at Pier-bridge between Busan New-port and the Nakdong River Estuary (부산 신항-낙동강 하구역 연결잔교부의 물질수송 해석(I) - 현장조사를 통한 잔교부 해수소통량 평가 -)

  • Lee, Young-Bok;Tawaret, Attapon;Kim, Heon-Tae;Yoon, Han-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.3
    • /
    • pp.189-195
    • /
    • 2008
  • This study analyzed the characteristics of sea water transport between Busan New-port and the Nakdong River estuary. A current meter was placed on a pier bridge and the current velocity was analyzed to determine the flow direction. Water temperature, salinity, turbidity, and tide were also measured to determine the characteristics of sea water and to describe the tidal current between the two regions. The results indicated that the dominant outflow direction of the ebb tidal current was from the Nakdong River estuary to Busan New-port. Conversely, during a flood tide, the dominant direction was from Busan New-port to the Nakdong River estuary. The maximum current speed during the first and second field measurements was about 13.18 and 30.80 cm/ sec, respectively. During the first field measurement, the total volume of sea water transport was $184.71\;m^3/sec$ and the residual volume transport was $+59.74\;m^3/sec$. By contrast, during the second field measurement, the respective values were $331.15\;m^3/sec$ and $28.88\;m^3/sec$.

  • PDF

Characteristics of accretion and scour around artificial reefs in the southern waters of Korea (한국 남해안에 시설된 인공어초 주위의 퇴적과 세굴 특성)

  • Kim, Chang-Gil;Suh, Sung-Ho;Oh, Tae-Gun;Kim, Byung-Gyun;Choi, Yong-Suk;Sheehy, Daniel J.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.233-233
    • /
    • 2011
  • This study describes the characteristics of accretion and scour around artificial reefs in Korea. The survey for accretion and scour was made at a dice reef set consisting of 137 dice reefs. The volume of a dice reef unit is 8 $m^3$. The reef set was placed on the muddy sand at 21.6 m in November of 1999. Equipment used in the survey includes Side Scan Sonar, Multi Beam Echo Sounder, Sub-Bottom Profiler and water current meter. According to the results, the artificial reefs are heaped up at two to three times (4 m) the height of the dice reef. The maximum current around the artificial reefs was 81.5 cm/sec at the ebb tide and 72.7 cm/sec at the flood tide. Scour around artificial reefs occurs upstream to the flow while accretion is formed at wake zone in the downstream. The height of accretion ranges from 2.4 to 3.0 m. The crest of the accretion is formed at the distance of about 10 m from the edge of the reef. The slope of accretion is formed steeply at the vicinity of the reef which is at right angles to the direction of main current, and grows gently lower with the increased distance from the reef. Scour is continuously caused by upwelling from the reef set and by side currents that flow parallel to side of the accretion. Also, scour takes place on the deposited sediment rather than on the remaining bottom sediments. This means that, once fully formed, the depth of scour gully on both sides to the direction of main current hardly changes.

  • PDF

Application of 3-D Numerical Method (LES-WASS-3D) to Estimation of Nearshore Current at Songdo Beach with Submerged Breakwaters (잠제가 설치 된 부산 송도해수욕장의 해빈류 예측에 관한 3차원 수치해석기법(LES-WASS-3D)의 적용)

  • Hur, Dong-Soo;Lee, Woo-Dong;Kim, Myoung-Kyu;Yoon, Jong-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.14-21
    • /
    • 2013
  • This study examined the field application of a 3-D numerical model (LES-WASS-3D) to the estimation of the nearshore current at Songdo beach, Busan. The wave and tide conditions observed at Songdo beach during Typhoon Ewiniar (July 10, 2006) were used in a numerical simulation. The numerical wave heights were in good agreement with the field data. The spatial distributions of the wave heights, mean water levels, and mean flows obtained from the numerical simulation are discussed in relation to the bottom topographical change near Songdo beach before and after Typhoon Ewiniar. The results revealed that LES-WASS-3D is a powerful tool for estimating the nearshore current in the field.

Tidal Exchange Of Sea Water In Gamag Bay (가막만의 해수교환)

  • Lee, Myeong-Cheol;Chang, Sun-duck
    • 한국해양학회지
    • /
    • v.17 no.1
    • /
    • pp.12-18
    • /
    • 1982
  • Tidal exchanges of sea water are studied by using drogue experiments and tidal current measurement data in Gamag Bay which has two channels. At the spring tide, the volume of tidal transport in the bay was estimated to be 46∼52% of the total volume of sea water in Gamag Bay, 7.1 10$\^$8/㎥. The tidal transport through the wide channel occupies 87% of the total tide transport of the bay. Residual current was deduced to flow north-northeastward at the rate of 3.254 10$\^$5/㎥ per tidal cycle. the tidal exchange of the sea water during the flood flow was estimated to be approximately 26% of the tidal transport, while that during the ebb flow was 41%. The tidal exchange through the wide channel during the flood flow occupies 77% of total tidal exchange of the bay through both channels, whereas that during the ebb flow does 88%. The diffusion coefficient of 2.08∼ 2.30 10$\^$7/$\textrm{cm}^2$/sec at the narrow channel was greater than that at the wide channel which was 1.2∼2.8 10$\^$6/$\textrm{cm}^2$/sec.

  • PDF

Physical Environments of Suyong Bay during the Rip Current Events at Haeundae - August 2009 (해운대 이안류 발생 시 수영만의 물리환경 - 2009년 8월)

  • Lee, J.C.;Kim, D.H.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.3
    • /
    • pp.110-114
    • /
    • 2010
  • A data set of current, wind and wave height measured at the monitoring buoy and sea level at Busan harbor were analyzed to explain the physical conditions during the strong rip current events at Haeundae Beach of Suyeong Bay during 13~15 August 2009. Tidal current, with spring-neap variations, has similar average speed to the short-term non-tidal currents. The common features at the time of rip currents are the strong northeasterly wind and superposition of tidal and non-tidal currents both flowing toward the coast. However on 14 August when the rip current did not occur, tide and wave height were similar to the rip-current cases but the tidal and non-tidal current were to nearly opposite directions. While strong winds produce large waves thus the basic condition for rip current but its influence on the local circulation in the bay is relatively small. Of the three adjacent beaches, only at Haeundae the rip currents are reported. This difference may be due to the unique bottom topography featured by underwater hill in the central region off Haeundae which can decay the incoming waves, tides and currents to intensify the rip current.