• Title/Summary/Keyword: Tidal volume

Search Result 223, Processing Time 0.023 seconds

NUMERICAL SIMULATION OF TSUNAMI WITH VOF METHOD BASED ON FVM (FVM에 기초한 VOF법에 의한 쓰나미 수치해석)

  • Myong, Hyon Kook;Park, Jin Woo
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.52-60
    • /
    • 2014
  • Recently, coastal structures have been built to protect coastal areas. However, if a tidal wave caused by an earthquake hits the coast, it would cause catastrophic damages. It is important to analyze the basics and the characteristics of a tsunami to reduce damages caused by natural disasters. In this study, a tsunami passing over different topographical changes is simulated with VOF method based on FVM(Finite Volume Method). The reduction of both scale and velocity is accomplished by similarity analysis, and an initial energy is generated by increasing the water level as needed to create a tsunami as if it is caused by a crustal movement. It is found that the present method is appropriate to simulate the tsunami with its mechanism.

Preparing for low-surface-brightness science with the Rubin Observatory: characterisation of LSB tidal features from mock images

  • Martin, Garreth W.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.40.3-41
    • /
    • 2021
  • Minor mergers leave behind long lived, but extremely faint and extended tidal features including tails, streams, loops and plumes. These act as a fossil record for the host galaxy's past interactions, allowing us to infer recent accretion histories and place constraints on the properties and nature of a galaxy's dark matter halo. However, shallow imaging or small homogeneous samples of past surveys have resulted in weak observational constraints on the role of galaxy mergers and interactions in galaxy assembly. The Rubin Observatory, which is optimised to deliver fast, wide field-of-view imaging, will enable deep and unbiased observations over the 18,000 square degrees of the Legacy Survey of Space and Time (LSST), resulting in samples of potentially of millions of objects undergoing tidal interactions. Using realistic mock images produced with state-of-the-art cosmological simulations we perform a comprehensive theoretical investigation of the extended diffuse light around galaxies and galaxy groups down to low stellar mass densities. We consider the nature, frequency and visibility of tidal features and debris across a range of environments and stellar masses as well as their reliability as an indicator of galaxy accretion histories. We consider how observational biases such as projection effects, the point-spread-function and survey depth may effect the proper characterisation and measurement of tidal features, finding that LSST will be capable of recovering much of the flux found in the outskirts of L* galaxies at redshifts beyond local volume. In our simulated sample, tidal features are ubiquitous In L* galaxies and remain common even at significantly lower masses (M*>10^10 Msun). The fraction of stellar mass found in tidal features increases towards higher masses, rising to 5-10% for the most massive objects in our sample (M*~10^11.5 Msun). Such objects frequently exhibit many distinct tidal features often with complex morphologies, becoming increasingly numerous with increased depth. The interpretation and characterisation of such features can vary significantly with orientation and imaging depth. Our findings demonstrate the importance of accounting for the biases that arise from projection effects and surface-brightness limits and suggest that, even after the LSST is complete, much of the discovery space in low surface-brightness Universe will remain to be explored.

  • PDF

Assistant device development and effects for promotion of bag-valve-mask ventilation (백-밸브-마스크 환기증진을 위한 보조기구 개발 및 효과)

  • Kwon, Chan-Yang;Lee, In-Soo
    • The Korean Journal of Emergency Medical Services
    • /
    • v.22 no.1
    • /
    • pp.49-59
    • /
    • 2018
  • Purpose: The purpose of this study was to develop an assistant device for the promotion of bag-valve-mask ventilation based on a non-equivalent control group pre-test and post-test design. Methods: The experimental tool was a mask assistance device developed by the researchers. Data were analyzed using SPSS 21.0 with the cardiopulmonary resuscitation (CPR) evaluation program from August 18 to 30, 2016. The research tools included general, hand-related, and ventilation-related characteristics. Results: Before and after using the mask assistance device, the tidal volume increased by 64 mL (p<.001) from 461.76 mL to 525.86 mL. The tidal volume for control was 477.86 mL, and there was a statistical difference (p<.05). The ventilation frequency in device users was 10 times per minute for a total of 20 ventilations with before 10.65 after 10 times, and that of the control group was before 10.36 times after 10 times; there was no difference in both groups(p>.05). The accuracy of the assistance device was $81.72{\pm}30.86%$, which was a very high value. However, the accuracy of ventilation in the control group with no assistance device was $18.97{\pm}32.44%$, which was a very low accuracy rate. Conclusion: This study's results suggested utilizing the newly-developed mask assistance device in CPR, and showed increases in tidal volume and accuracy of ventilation using the bag-valve-mask ventilation equipment. The general and hand-related characteristics did not have any effect, so the use of the device proved to increase the efficacy in all users.

Clinical assessment of the efficacy of supraglottic airway devices compared with endotracheal tubes in cats during volume-controlled ventilation

  • Niyatiwatchanchai, Nutawan;Thengchaisri, Naris
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.27.1-27.10
    • /
    • 2020
  • The efficacies of a supraglottic airway device (SGAD) and an endotracheal tube (ETT) in cats under general anesthesia with volume-controlled ventilation (VCV) were compared. Thirty healthy cats were randomly allocated for airway control using either an SGAD or an ETT. Five tidal volumes (6, 8, 10, 12, and 14 mL/kg) were randomly tested, and respiratory rates were adjusted to achieve a minute ventilation of 100 mL/kg/min. The dose of propofol necessary to insert the SGAD or ETT, the static respiratory pressure, leakage during VCV, and end tidal CO2 (ETCO2) were recorded. Dosages of propofol and static respiratory measurements for the SGAD and ETT groups were compared using a t-test. The distribution of leakages and hypercapnia (ETCO2 > 45 mmHg) were compared using Fisher's exact test. A significance level of p < 0.05 was established. No significant difference in dose of propofol was observed between the SGAD and ETT groups (7.1 ± 1.0, 7.3 ± 1.7 mg/kg; p = 0.55). Static resistance pressure of the SGAD (22.0 ± 8.1 cmH2O/L/sec) was significantly lower than that of the ETT (36.6 ± 12.9 cmH2O/L/sec; p < 0.01). Of the 75 trials, leakage was more frequent when using an SGAD (8 events) than when using an ETT (1 event; p = 0.03). Hypercapnia occurred more frequently with SGAD (18 events) than with ETT (3 events; p < 0.01). Although intubation with an ETT is the gold standard in small animal anesthesia, the use of an SGAD can reduce airway resistance and the work of breathing. Nonetheless, SGAD had more dead space and the tidal volume for VCV needs adjustment.

Effects of Matrix Metalloproteinase Inhibitor on Ventilator-Induced Lung Injury in Rats (기계환기로 인한 백서의 급성 폐손상에서 Matrix Metalloproteinase Inhibitor의 효과)

  • Kim, Je-Hyeong;Park, Soo-Yeon;Hur, Gyu-Young;Lee, Seung-Heon;Lee, Sang-Yeub;Park, Sang-Myeon;Suh, In-Bum;Shin, Chol;Shim, Jae-Jeong;In, Kwang-Ho;Kang, Kyung-Ho;Yoo, Se-Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.6
    • /
    • pp.619-634
    • /
    • 2002
  • Background : Many inflammatory mediators and collagenases are involved in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). The increase of matrix metalloproteinase-9 (MMP-9, gelatinase-B) produced mainly by inflammatory cells was reported in many ALI models and connective tissue cells. In this study, the expression of MMP-9 in ventilator-induced lung injury (VILI) model and the effects of matrix metalloproteinase inhibitor (MMPI) on VILI were investigated. Methods : Eighteen Sprague-Dawley rats were divided into three groups: low tidal Volume (LVT, 7mL/Kg tidal volume, 3 $cmH_2O$ PEEP, 40/min), high tidal volume (HVT, 30mL/Kg tidal volume, no PEEP, 40/min) and high tidal volume with MMPI (HVT+MMPI) groups. Mechanical ventilation was performed in room air for 2 hours. The 20 mg/Kg of CMT-3 (chemically modified tetracycline-3, 6-demethyl 6-deoxy 4-dedimethylamino tetracycline) was gavaged as MMPI from three days before mechanical ventilation. The degree of lung injury was measured with wet-to-dry weight ratio and acute lung injury score. Expression of MMP-9 was studied by immunohistochemical stain with a mouse monoclonal anti-rat MMP-9 $IgG_1$. Results : In the LVT, HVT and HVT+MMPI groups, the wet-to-dry weight ratio was $4.70{\pm}0.14$, $6.82{\pm}1.28$ and $4.92{\pm}0.98$, respectively. In the HVT group, the ratio was significantly higher than other groups (p<0.05). Acute lung injury score measured by five-point scale was $3.25{\pm}1.17$, $12.83{\pm}1.17$ and $4.67{\pm}0.52$, respectively. The HVT group was significantly damaged by VILI and MMPI protects injuries by mechanical ventilation (p<0.05). Expression of MMP-9 measured by four-point scale was $3.33{\pm}2.07$, $12.17{\pm}2.79$ and $3.60{\pm}1.95$, respectively, which were significantly higher in the HVT group (p<0.05). Conclusion : VILI increases significantly the expression of MMP-9 and MMPI prevents lung injury induced by mechanical ventilation through the inhibition of MMP-9.

Study on the Water and Material Exchange in Deukryang Bay 1. Volume Transport and Turnover Time of Sea Water (득량만의 해수 교환 및 물질 순환에 관한 연구 1 . 해수의 수송량 및 교환 시간)

  • 조규대;이충일
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.311-320
    • /
    • 1998
  • The volume transport and turnover time of the Deukryang Bay. located at the southern area of Korea, were calculated based on the current meter(RCM-7,ACM 16M) data observed at the three gateways of the tegrating observed data and then averaging on time. dangdo and Kogumdo. The total water volume transports through three entrances of the bay in May and October were $3.9{\times}10-2Sv, 3.4{\times}10^{-2}Sv(1Sv=10^6m^3s^{-1}$) and turnover time were 0.97day, 1.12day, respectively. Semidiurnal tides were predominant (70~85%). The water volume transports by residual currents were 2~4% of total water volume transports . The average fraction of fresh water calculated by tidal prism method using salinity difference between inflow current and outflow current through three entrances In Deukryang Bay was about 0.06% of total volume and the flushing time of fresh water was estimated as 0.97day.

  • PDF

Change of Craniovertebral Angle(CVA) and Respiration on Application Correction Method of Posture and Breathing Accessory Muscle Exercise in Forward Head Posture(FHP) (두부전방전위자세에 자세교정법과 호흡보조근운동의 적용 시 CVA와 호흡의 변화)

  • Cho, hyunrae
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.3
    • /
    • pp.89-94
    • /
    • 2015
  • Purpose : This study was analyzed to researched the improvement of the posture and breathing ability on correction method of posture and breathing exercise in Forward Head Posture(FHP) Method : Eighten forward head posture subjects participated in this study. The control group applied to correction method of posture and the experiment group applied to correction method of posture with breathing exercises. Results : The results showed significant improvement in Craniovertebra-Angle on each two group(P<0.05). All the other result showed non-significant in respiratory(Tidal volume, Expiratory residual volume, Inspiratory residual volume) But value of result is slightly improved in after exercise. Conclusion : CVA angle is increased in each group but not increased between experiment group and control group. Total Volume(TV), Inspiratory Reserve Volume(IRV) and Expiratory Reserve Volume(ERV) are a little increased.

Theoretical Prediction of Lung Hyperinflation(LHI) Due to Asymmetric Pressure-Flow Characteristics of Human Airways During High Frequency Ventilation (HFV)

  • Cha, Eun-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.195-202
    • /
    • 1990
  • The hypothesis of asymmetric resistance to explain the phenomenon of lung hyperinflation (LHI) during hlgh frequency ventilation (HFV) was quantitatively studied. LHI was predicted by modeling the ism-volume pressure-flow (IVPF) data from 5 human subjects using the empirical Rohrer's equation. Non-steadiness during HFV was compensated by em- ploying recently proposed volume-frequency diagram. Tidal volume and ventilation frequency were 100 ml and 20 Hz, respectively. Airflow pattern was a symmetric sinusoid. The predic- tion results of mean pressure drop across the airways were averaged for those 5 subjects, and compared with zero by one-sided student's t-test. A marginally significant (P<0.1) increase in mean pressure drop was observed during HFV at low lung volumes (below FRC) , which could increase mean lung volume up to one liter When the lung volume was above FRC, no significant LHI (P >0.25) was resulted. LHI seemed to be inversely related to the lung volume. These results recommend to clinically apply HFV only at lung volumes above FRC.

  • PDF

Salt Removal in a Reclaimed Tidal Land Soil with Gypsum, Compost, and Phosphate Amendment

  • Lee, Jeong-Eun;Seo, Dong-Hyuk;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.326-331
    • /
    • 2015
  • High salinity and sodicity of soils play a negative role in producing crops in reclaimed tidal lands. To evaluate the effects of soil ameliorants on salt removal in a highly saline and sodic soil of reclaimed tidal land, we conducted a column experiment with treating gypsum, compost, and phosphate at 0-2 cm depth and measured the salt concentration of leachate and soil. Electrical conductivity of leachate was $45-48dSm^{-1}$ at 1 pore volume (PV) of water and decreased to less than $3dSm^{-1}$ at 3 PV of water. Gypsum significantly decreased SAR (sodium adsorption ratio) of leachate below 3 at 3 PV of water and soil ESP (exchangeable sodium percentage) below 3% for the whole profile of soil column. Compost significantly decreased ESP of soil at 0-5 cm depth to 5% compared with the control (20%). However, compost affected little the composition of cations below a depth of 5 cm and in leachate compared with control treatment. It was concluded that gypsum was effective in ameliorating reclaimed tidal lands at and below a soil layer receiving gypsum while compost worked only at a soil layer where compost was treated.

The Usefulness of Pressure-regulated Volume Control(PRVC) Mode in Mechanically Ventilated Patients with Unstable Respiratory Mechanics (기계 호흡 중 불안정한 호흡역학을 보인 환자에서 압력조절용적조정양식(Pressure-regulated Volume Control Mode)의 효용)

  • Sohn, Jang-Won;Koh, Youn-Suck;Lim, Chae-Man;Shim, Tae-Sun;Lee, Jong-Deog;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1318-1325
    • /
    • 1997
  • Background : Since the late 1960s, mechanical ventilation has been accomplished primarily using volume controlled ventilation(VCV). While VCV allows a set tidal volume to be guaranteed, VCV could bring about excessive airway pressures that may be lead to barotrauma in the patients with acute lung injury. With the increment of knowledge related to ventilator-induced lung injury, pressure controlled ventilation(PCV) has been frequently applied to these patients. But, PCV has a disadvantage of variable tidal volume delivery as pulmonary impedance changes. Since the concept of combining the positive attributes of VCV and PCV(dual control ventilation, DCV) was described firstly in 1992, a few DCV modes were introduced. Pressure-regulated volume control(PRVC) mode, a kind of DCV, is pressure-limited, time-cycled ventilation that uses tidal volume as a feedback control for continuously adjusting the pressure limit However, no clinical studies were published on the efficacy of PRVC until now. 'This investigation studied the efficacy of PRVC in the patients with unstable respiratory mechanics. Methods : The subjects were 8 mechanically ventilated patients(M : F=6 : 2, $56{\pm}26$ years) who showed unstable respiratory mechanics, which was defined by the coefficients of variation of peak inspiratory pressure for 15 minutes greater than 10% under VCV, or the coefficients of variation of tidal volume greater than 10% under PCV. The study was consisited of 3 modes application with VCV, PCV and PRVC for 15 minutes by random order. To obtain same tidal volume, inspiratory pressure setting was adjusted in PCV. Respiratory parameters were measured by pulmonary monitor(CP-100 pulmonary monitor, Bicore, Irvine, CA, USA). Results : 1) Mean tidal volumes($V_T$) in each mode were not different(VCV, $431{\pm}102ml$ ; PCV, $417{\pm}99ml$ ; PRVC, $414{\pm}97ml$) 2) The coefficient of variation(CV) of $V_T$ were $5.2{\pm}3.9%$ in VCV, $15.2{\pm}7.5%$ in PCV and $19.3{\pm}10.0%$ in PRVC. The CV of $V_T$ in PCV and PRVC were significantly greater than that in VCV(p<0.01). 3) Mean peak inspiratory pressure(PIP) in VCV($31.0{\pm}6.9cm$ $H_2O$) was higher than PIP in PCV($26.0{\pm}6.5cm$ $H_2O$) or PRVC($27.0{\pm}6.4cm$ $H_2O$)(p<0.05). 4) The CV of PIP were $13.9{\pm}3.7%$ in VCV, $4.9{\pm}2.6%$ in PVC and $12.2{\pm}7.0%$ in PRVC. The CV of PIP in VCV and PRVC were greater than that in PCV(p<0.01). Conclusions : Because of wide fluctuations of VT and PIP, PRVC mode did not seem to have advantages compared to VCV or PCV in the patients with unstable respiratory mechanics.

  • PDF