• 제목/요약/키워드: Tidal Stream Power

검색결과 23건 처리시간 0.029초

국내외 해양 조류발전 기술 (Recent Ocean Tidal Stream Power Generation Technology)

  • 조철희;박관규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.134-137
    • /
    • 2006
  • Tidal power can use conventional technology to extract energy from the tides. It is usually best deployed in areas where there i s a high tical range which includes Western and Southern coastal areas in Korea. However, to extract tical energy, a barrage across an estuary or a bay is to be constructed that is now very hard due to severe environmental impact on local estuary. The recent technology of application of tidal stream provides a new window to extract power minimizing the adverse environmental impact Tidal stream technology which directly exploits these currents is relatively new but is presently generating considerable interest Turbine rotors can be used to extract energy from the flows. Prototype devices currently on test in the UK include the 300kW SeaFlow turbine. In this paper, the recent technology and research on ocean tical stream power are addressed

  • PDF

조류발전용 수평축터빈의 단독성능 평가를 위한 수치 해석법 (NUMERICAL METHODS FOR OPEN WATER PERFORMANCE PREDICTION OF HORIZONTAL AXIS TIDAL STREAM ENERGY CONVERSION TURBINE)

  • 이주현;김동환;이신형;김문찬;현범수;남종호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.155-162
    • /
    • 2010
  • Recently, due to high oil prices and environmental pollution issues, interest of alternative energy development increases and the related research is widely conducted. Among those research activities the tidal stream power generation utilizes the tidal flow as its mechanical power resource and less depends on the environmental condition for installation and operation than other renewable energy resources. Therefore the amount of power generated is quite consistent and straightforward to predict. However, research on the tidal stream energy conversion turbine is rarely found. In the present study, two numerical methods were developed and compared for the open water Momentum Theory, which is widely used for wind turbines, was adopted. The moving reference frame method for Computational Fluid Dynamis solver were also used. Hybrid meshing was used for the complex geometry of turbines. The analysis results using each method were compared to figure out a better method for the performance prediction.

  • PDF

10kW급 상반전 조류터빈의 설계와 성능에 관한 연구 (Design and Performance Evaluation of a 10kW Scale Counter-Rotating Tidal Turbine)

  • 황안둥;양창조
    • 한국유체기계학회 논문집
    • /
    • 제17권1호
    • /
    • pp.47-53
    • /
    • 2014
  • This paper aims to present the design and performance evaluation of a counter-rotating tidal turbine using CFD and to compare its performance with single rotor. The device scale is 10kW and the rotating part consists of two rotors which rotate in opposite direction. Compared with conventional single rotor, the counter-rotating system shows higher power efficiency at high stream velocity but lower efficiency at low stream velocity. The added counter-rotated rotor together helps improve the energy absorption capacity but has influence on the upstream rotor that reduces its performance. In terms of power capture, the designed counter-rotating tidal turbine is more advantageous in high speed tidal condition.

Tidal Farming Optimization around Jangjuk-sudo by Numerical Modelling

  • Nguyen, Manh Hung;Jeong, Haechang;Kim, Bu-Gi;Yang, Changjo
    • 한국유체기계학회 논문집
    • /
    • 제19권4호
    • /
    • pp.54-62
    • /
    • 2016
  • This study presents an approach of tidal farming optimization using a numerical modelling method to simulate tidal energy extraction for 1MW scale tidal stream devices around Jangjuk-sudo, South Korea. The utility of the approach in this research is demonstrated by optimizing the tidal farm in an idealized scenario and a more realistic case with three scenarios of 28-turbine centered tidal array (named A, B and C layouts) inside the Jangjuk-sudo. In addition, the numerical method also provides a pre-processing calculation helps the researchers to quickly determine where the best resource site is located when considering the position of the tidal stream turbine farm. From the simulation results, it is clearly seen that the net energy (or wake energy yield which includes the impacts of wake effects on power generation) extracted from the layout A is virtually equal to the estimates of speed-up energy yield (or the gross energy which is the sum of energy yield of each turbine without wake effects), up to 30.3 GWh/year.

Performance Research of Counter-rotating Tidal Stream Power Unit

  • Wei, Xuesong;Huang, Bin;Liu, Pin;Kanemoto, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권2호
    • /
    • pp.129-136
    • /
    • 2016
  • An experimental investigation was carried out to improve the performance of a counter-rotating type horizontal-axis tidal stream power unit. Front and rear blades were designed separately based on modified blade element momentum (BEM) theory, and their performances at different conditions of blade tip speed ratio were measured in a wind tunnel. Three different groups of blades were designed successively, and the results showed that Group3 possessed the highest power coefficient of 0.44 and was the most satisfactory model. This experiment shows that properly increasing diameter and reducing chord length will benefit the performance of the blade.

영구자석 동기발전기와 회류수조를 이용한 조류발전 시스템의 특성 해석 (Analysis of the Characteristics of the Tidal Current Power Generation System Using PMSG and Water Tunnel)

  • 안원영;이석현;김근수;이강희;조철희
    • 신재생에너지
    • /
    • 제9권1호
    • /
    • pp.44-50
    • /
    • 2013
  • In order to analyze the characteristics of tidal current power generation system, we measured the output power according to the stream velocity by a water tunnel system and a simulation in MATLAB/Simulink. The water tunnel system consisted of impeller tidal flow transducer and PMSG with rotor in the water. The simulation consisted of PMSG, the tidal current turbine, and back-to-back converter. Also, we simulated the characteristics of output power according to the change of blade length and angular velocity.

쥐가오리 모방 진동식 조류 터빈의 출력향상에 대한 실험적 연구 (Experimental Study on Power Improvement of a Flapping Tidal Stream Turbine by Mimicking a Manta-Ray)

  • 고진환;김지훈
    • Ocean and Polar Research
    • /
    • 제39권4호
    • /
    • pp.293-300
    • /
    • 2017
  • Various approaches have been tried in an effort to improve the power performance of a flapping tidal stream turbine after it was introduced as an alternative to conventional rotary turbines. Among the different approaches, researches on mimicking the morphology and behavior of animals have been conducted. In this study, we utilized a flapper to mimic the multi-joint pectoral fin of a Manta-ray and investigated its effect on power generation. Experiments were conducted by a dual flapping apparatus with rigid and flexible flappers in a towing tank facility. First, in order to determine the conditions that can produce high power generation, the performances of the dual rigid flappers were compared when input arm angles and frequencies are changed, and the two conditions $40^{\circ}$, 0.2 Hz and $40^{\circ}$, 0.3 Hz for the input arm angle, frequency were selected. When the mimicked flexible flapper was used instead of the front rigid flapper and the rear one, the power was improved by an average of 22% and 38% in the experimental conditions, respectively. Moreover, it was recognized from the apparent camber observed during the experiment that the flexible flapper had been successfully applied. If the feasibility of the Manta-Ray mimicked flapper is improved through subsequent researches, the flapping tidal turbine can be a viable alternative to rotary turbines in the near future.

A Study of Performance estimate and Flow Analysis of the 100kW Counter-Rotating Marine Current Turbine by CFD

  • 김문오;김창구;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.166.1-166.1
    • /
    • 2011
  • The rotor design is fundamental to the performance and dynamic response of the Counter-rotating marine tidal current turbine. The wind industry has seen significant advancement single rotor blade technology, offering considerable knowledge and making it easy to transfer to tidal stream energy converters. In this paper, 3D flow and performance an alysis on a 100 kW counter-rotating marine current turbine blade was carried out by using the 3-D Navier-Stokes commercial solver(ANSYS CFX-11.0) to provide more efficient design techniques to design engineers. The front and rear rotor diameter is 8m and the rotating speed is 24.72rpm. Hexahedral meshing was generated by ICEM-CFD to achieve better quality of results. The rated power and its approaching stream velocity for design are 100 kW and 2 m/s respectively. The pressure distribution on the blade's suction side tells us that the pressure becomes low at the leading edge of the airfoil as it moves from the hub to the tip.

  • PDF

A Study on Energy Extraction from Tidal Currents

  • 황안둥;양창조
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2011년도 전기공동학술대회 논문집
    • /
    • pp.79-79
    • /
    • 2011
  • The oceans are an untapped resource, capable of making a major contribution to our future energy needs. In the search for a non polluting renewable energy source, there is a push to find an economical way to harness energy from the ocean. Tidal stream is one of ocean energy form that is being investigated as potential source for power generation. Tidal current turbines are therefore designed as conversion machinery to generate power from tidal currents. A study on energy extraction from tidal currents is presented in this paper.

  • PDF

조류발전 로터 설계변수에 따른 성능 검토 (HAT Tidal Current Rotor Performance as per various Design Parameter)

  • 조철희;임진영;이강희;송승호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.590-593
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. This paper introduces the experiment of rotor performance and also the effect of design parameter on the performance of HAT rotor by CFD.

  • PDF