• 제목/요약/키워드: Tidal Flow

검색결과 487건 처리시간 0.024초

Distributions of Tidal Current, Salinity and Suspended Sediment in Suyoung Bay (수영만의 조류, 염분 및 부유물질의 분포)

  • KIM Cha-Kyum;LEE Jong-Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제25권5호
    • /
    • pp.359-370
    • /
    • 1992
  • To investigate the flow pattern and mixing process in Suyoung Bay, field observations and data analyses of tidal current, salinity and suspended sediment (SS) were carried out. Ebb flow is stronger than flood flow, and duration of ebb tide is longer than that of flood tide. Semi-diurnal component of tidal current is predominant, and current rotating clockwise occurs in the central part of the bay. The direction of the residual currents in the central part of the bay and offshore is almost N to WNW, and the speed is 4-14cm/s. Eulerian diffusion coefficients estimated from the current data have the range of $6.2\times10^4-4.2\times10^6\;cm^2/s,$ Salinity structure in Suyoung River estuary during flood tide is of partially mixed type, but is of stratified type during ebb tide. Salinity fluctuation is large at the surface, and the fluctuation decreases with depth. SS concentration in Suyoung River estuary has a higher value during ebb tide than that during flood tide. Salinity and 55 concentrations in the estuary appeared to be very sensitive to the change of river flow.

  • PDF

Performance of a Horizontal-axis Turbine Based on the Direction of Current Flow (수평축 조류발전 로터의 유향변화에 따른 효율 고찰)

  • Jo, Chul-Hee;Park, Ro-Sik;Yim, Jin-Young;Lee, Kang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • 제24권4호
    • /
    • pp.8-12
    • /
    • 2010
  • The use of a tidal-current power system is one source of renewable energy that can minimize the environmental impact of power production and offer many other advantages compared to conventional energy sources. Unlike other energy production approaches, rate of energy production can be precisely predicted and the operational rate is very high. The performance of the rotor, which has a vital role in energy production using tidal currents, is determined by various design factors, and it should be optimized for the specific ocean environment in the field. The horizontal-axis turbine is very sensitive to the direction of flow, and flow direction changes due to rise and fall of the tides. To investigate the performance of the rotor considering the interaction problems with incidence angle of flow, a series of experiments were conducted, and a 3D CFD model was designed and analyzed by ANSYS CFX. The results and findings are summarized in the paper.

Comparision of Tidal Current Patterns at Keum River Estuary before and after Construction of Keum River Bank and Coastal Structures (금강하굿둑과 각종 해안구조물 설치 전, 후의 금강하구역 해수유동 양상 비교)

  • Jang, Chang-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제22권4호
    • /
    • pp.601-610
    • /
    • 2021
  • The tidal current patterns at Keum River Estuary before and after the construction of coastal structures were compared according to the CASES. The depth-integrated and tidal difference treatment applied FLOW2DH numerical model was used for the tidal current predictions. The test conditions consisted of before construction of coastal structures (CASE1), after construction of coastal structures (CASE2), and the addition of watergate operation(CASE1Q and CASE2Q), and present (CASE3). CASE1 showed a stable tidal current pattern, such as a natural estuary. In CASE2, the tidal current velocities and directions of the Keum River Estuary were changed due to the installed coastal structures. In particular, the tidal current velocities of the Gaeya open channel sections (P5~P9) in CASE2 were calculated to be 10~30% larger than that of CASE1. In the case of the Gunsan Inner Harbor (P4), which is closest to the Geum River Estuary, the ebb flow rate was approximately 250~300% faster than that of other CASEs due to the discharge of the watergate operation for 2.7 hours during the ebb of CASE1Q and CASE2Q. This will affect sediment transport, and it is predicted to lead to seabed changes. CASE3 is considered to be entering the stabilization stage according to the simulation of the tidal current velocities and directions of the Keum River Estuary and the surrounding coastal area.

Optimal Rotor Blade Design for Tidal In-stream Energy (조류발전용 로터 블레이드의 최적 형상 설계)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제17권1호
    • /
    • pp.75-82
    • /
    • 2011
  • Marine current energy is one of the most interesting renewable and clean energy resources that have been less exploited. Especially, Korea has worldwide outstanding tidal current energy resources and it is highly required to develop tidal in-stream energy conversion system in coastal area. The objective of study is to investigate harnessing techniques of tidal current energy and to design the a 100 kW horizontal axis tidal turbine using blade element momentum theory with Prandtl's tip loss factor for optimal design procedures. In addition, Influence of Prandtl's tip loss factor at local blade positions as a function of tip speed ratio was studied, and the analysed results showed that power coefficient of designed rotor blade using NACA 63812 was 0.49 at rated tip speed ratio.

Analysis of Tidal Flow using the Frequency Domain Finite Element Method (II) (有限要素法을 이용한 海水流動解析 (II))

  • Kwun, Soon-Kuk;Koh, Deuk-Koo;Cho, Kuk-Kwang;Kim, Joon-Hyun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제34권2호
    • /
    • pp.73-84
    • /
    • 1992
  • The TIDE, finite element model for the simulation of tidal flow in shallow sea was tested for its applicability at the Saemangeum area. Several pre and post processors were developed to facilitate handling of the complicated and large amount of input and output data for the model developed. Also an operation scheme to run the model and the processors were established. As a result of calibration test using the observed data collected at 9 points within the region, linearlized friction coefficients were adjusted to be ranged 0.0027~0.0072, and water depths below the mean sea level at every nodes were changed to be increased generally by 1 meter. Comparisons of tidal velocities between the observed and the simulated for the 5 stations were made and obtained the result that the average relative error between simulated and observed tidal velocities was 11% for the maximum velocities and 22% for the minimum, and the absolute errors were less than 0.2m/sec. Also it was found that the average R.M.S. error between the velocities of observed and simulated was 0.119 m/sec and the average correlation coefficient was 0.70 showing close agreement. Another comparison test was done to show the result that R.M.S. error between the simulated and the observed tidal elevations at the 4 stations was 0.476m in average and the correlation coefficients were ranged 0.96~0.99. Though the simulated tidal circulation pattern in the region was well agreed with the observed, the simulated tidal velocities and elevations for specific points showed some errors with the observed. It was thought that the errors mainly due to the characteristics of TIDE Model which was developed to solve only with the linearized scheme. Finally it was concluded that, to improve the simulation results by the model, a new attempt to develop a fully nonlinear model as well as further calibration and the more reasonable generation of finite element grid would be needed.

  • PDF

The Characteristics of Coastal Currents to the Northwest of the Taean Peninsula in the Yellow Sea (서해 태안반도 북서 연안해역에서의 연안류 특성)

  • Shin, Hong-Ryeol
    • Ocean and Polar Research
    • /
    • 제27권4호
    • /
    • pp.433-441
    • /
    • 2005
  • To investigate the characteristics of tidal currents and water circulation in the coastal waters off the Taean Peninsula, tidal currents and sea levels were measured at the study area from 1998 to 2004. In the central waterway to the south of Changan Sand Ridge, mean speed of tidal currents and residual currents were 74.0cm/s, 17.8cm/s respectively; the dominant residual currents flowed northeastward, and the amplitudes of semi-diurnal components $(M_2,\;S_2)$ were larger than diurnal components $(O_1,\;K_1)$. The flood and ebb tidal currents were northeastward and southwestward, respectively, and each period was about 6 hours for them, which was consistent with the period of sea levels at the study area. In the coastal region near Hakampo, Taean, mean velocities of tidal currents and residual currents were 46.1cm/s, 30.8cm/s respectively, and the dominant residual currents flowed southwestward. The amplitudes of shallow water constituents $(M_4,\;MS_4)$ were relatively laige, which were weaker to the northeastern coastal region off Mineodo. The northeastward flow continued for about $2{\sim}3$ hours, while the southwestward flow continued for about $9{\sim}10$ hours near Hakampo during the tidal period. Tidal currents flowed northeastward in the central area of the waterway during the period from the Low Water Level (LWL) to the High Water Level (HWL). While the currents in the coastal region flowed northeastward for the first 3 hours after the LWL, southwestward counter-currents flowed between 3 and 6 hours after the LWL. During the period from the HWL to the LWL, the dominant currents flowed southwestward in the study area except to the northeastern coastal region off Mineodo. Along the shorelines, the counter-currents flowed northward between 4 and 6 hours after the HWL. It seems that the counter-currents near the coastal region are caused by the topography and the geography of the shorelines at the study area.

Analysis of Flow Velocity Change in Blade Installed Shroud System for Tidal Current Generation (블레이드가 설치된 조류발전용 쉬라우드 시스템 내 유속 변화 분석)

  • Lee, Uk Jae;Han, Seok Jong;Jeong, Shin Taek;Lee, Sang Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제31권1호
    • /
    • pp.9-16
    • /
    • 2019
  • Flow velocity changes in the shroud system for tidal current power generation due to experimental flow velocities and blade geometry changes were analyzed by hydraulic experiment and numerical simulation. Through the hydraulic experiment, flow velocities at inlet of shroud system and RPM according to blade geometry were measured, and numerical simulation was used to analyze flow velocity changes in shroud. When the experimental flow velocity was increased by about 28% and the shape of the airfoil was applied, the measured flow velocity at the shroud inlet tended to increase by up to about 56%. On the other hand, when airfoil-shaped blades were installed, the flow velocity at the inlet tended to increase by up to 14% compared to conventional blades, and RPM was also the highest at the same conditions. The hydraulic experiment and numerical simulation results showed an error of about 13%, and the trends of the flow velocity changes in each result are similar. Numerical simulation of the flow velocity changes in the shroud showed that the flow velocity tended to increase 1.7 times at the front of the blade compared to the inlet. The results of the flow velocity change analysis in the shroud system obtained from this study will provide the basic data necessary for the development of efficient shroud system for tidal current power generation.

Characteristics of Tidal Flow Simulation of Real Tide in West-South Coastal Waters of Korea (실조석에 의한 한국 서남해 연안역에서 해수유동의 재현특성)

  • Jeong, Seung-Myong;Park, Il-Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제26권5호
    • /
    • pp.531-541
    • /
    • 2020
  • In this study, a computed tide of a real tide was introduced to improve the numerical solutions for tides and tidal flow simulations. The real tide was defined considering the nodal modulation amplitude, phase correction factor, astronomical argument, and tidal harmonic constants of all the constituents. The numerical simulation was performed using the real tide parameters for the west-south coastal waters of Korea, where the observation data for tides, tidal currents, waves, and winds over two seasons exist. The tidal flow simulation of the real tide was simulated successfully. The correlation coefficient between the observed and calculated values was 1.0, which indicated both accurate amplitude and phase. The U- and V-components of the tidal current obtained for the real tide had average valid correlations of 0.83 and 0.936, respectively. The speed error for the residual current was 0.006 m/s on the average, which indicated an insignificant difference, and the directional behavior of the residual current was very similar. In addition, the velocity error was attributed to various weather effects, such as high waves and wind storms. Therefore, this model is expected to improve current solutions provided that weathering forces, such as waves and winds, are considered.

The Exchange of Sea Water in Yeoja Bay (여자만의 해수교환)

  • 이명철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제19권1호
    • /
    • pp.33-39
    • /
    • 1983
  • Tidal exchange of sea water was studied by using drogue experiments and tidal current measurement data in Yeoja Bay which has a narrow channel. At the spring tide, the volume of tidal transport in the bay was estimated to be 43% of the mean volume of the sea water in Yeoja Bay, 1.96km super(3). Residual current was deduced to flow southward at the rate of 3,658$\times$10 super(4) m super(3) per tidal cycle. The mean tidal exchange of sea water during the flood flow was estimated to be approximately 5.0% of the volume of sea water at the mean high water level in the bay, 2.33km super(3), while that during the ebb flow was 6.3%. One dimensional diffusion coefficient of 1.69-1.97$\times$10 super(6) cm super(2)/sec was obtained at the channel in the bay.

  • PDF

Ocean Current Power Farm Interaction Study (해양 조류발전단지 간섭 연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Chae, Kwang-Su;Park, Ro-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.109-113
    • /
    • 2009
  • Several tidal current power plants are being planned and constructed in Korea utilizing the strong tidal currents along the west and south coasts. A tidal current reaches 9.7 m on the west coast; there are few potential regions for tidal current power generation. The construction of a dam to store water can prevent the circulation of water, causing a great environmental impact on the coast and estuary. The tidal barrage could produce a large amount of power, but it should be carefully considered. The purpose of developing renewable energies is to minimize the environmental impact and to maximize the utilization of clean energy. To produce a great quantity of power, tidal current farms require the placement of numerous units in the ocean. The power generation is very dependent on the size of the rotor and the incoming flow velocity. Also, the interactions between devices contribute greatly to the production of power. The efficiency of a power farm is estimated to determine the production rate. This paper introduces 3 D interaction problems between rotating rotors, considering the axial, transverse, and diagonal distances between horizontal axis tidal current devices.