• Title/Summary/Keyword: Tidal

Search Result 3,146, Processing Time 0.028 seconds

Development of 500kW Tidal Current Energy Converter and Uldolmok Field Test (500kW 조류력 발전장치 개발 및 울돌목 실증시험)

  • Sim, Wooseung;Choe, Ickhung;Lee, Kyuchan;Kim, Haiwook;Bae, Jonggug;Min, Kehsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.159.2-159.2
    • /
    • 2011
  • Hyundai Heavy Industries has developed a tidal current energy converter utilizing the accumulated technology as the world largest constructor for ship and offshore structures. The model has two sets of turbines in both ends in order to utilize the bi-directional current flows in flood and ebb tide. The torque produced by turbine in tidal current is directly delivered to generator along the horizontal axis, in which the turbine, gear, generator, gear and turbine are connected successively. The manufactured model for field test has the turbine diameter of 5 meters to produce the maximum power of 500kW at maximum current speed of 5m/s. The technical verification of tidal power converter was performed by means of small scale model test in towing tank as well as field test at the Strait of Uldolmok located in Jindo of Jeollanamdo province. Field test was performed by mounting the tidal current converter on the SEP(Self Elevating Platform) which could lower the 4 vertical legs on the seabed and could elevate platform over the water surface using the hydraulic power for itself. The field test performed for a month shows that power output is similar or larger compared with the expected one in design stage. This paper presents the development of tidal current energy converter and real sea field test by Hyundai Heavy Industries. This project has finished successfully and provided the technical advance toward commercial services for tidal current power generation in the south-west region in Korea.

  • PDF

The Characteristics of Tidal Residual Current in Youngil Bay (영일만의 조석잔차류 거동 특성)

  • Kim Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.1
    • /
    • pp.14-23
    • /
    • 2001
  • The characteristics of tidal circulation with Hyungsan River discharges in Youngil Bay by the numerical experiments is elucidated. For the simulation of tidal residual currents related to inflow by the river discharges in Youngil Bay located in the southeastern part of Korean Peninsula, the two-dimensional numerical experiment is peformed. The tidal elevation boundary conditions of the 4 main tidal harmonic constituents (M₂, S₂, K₁ and O₁) on the open boundary and river discharges at the river boundary are considered. The computed results obtained from numerical experiment showed good agreements with the field observation ones. The residual currents generally flow toward the inner bay through the western (Dalman-Gap) and central areas of the bay, and then the currents go toward the outer bay along the eastern shore (Changgi-Gap) of the bay with anti-clockwise circulation. Especially, in the numerical experiment without Hyungsan River discharges, these flow patterns are disappeared. Based on the results, it showed that the Hyungsan River discharges play the dominant role in the patterns of tidal residual currents. This flow pattern of tidal residual currents are important mechanism of water quality, material transport in Youngil Bay.

  • PDF

Acoustic Characteristics of Underwater Noise from Uldolmok Tidal Current Pilot Power Plant (울돌목 시험조류발전소의 수중소음 특성 연구)

  • Ko, Myungkwon;Choi, Jee Woong;Yi, Jin-Hak;Jeong, Weonmu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.523-531
    • /
    • 2012
  • Recently, as a result of increasing concern about eco-friendly power, the demand for the power stations using environmentally friendly powers such as photovoltaic energy, wind force, tidal power, and tidal current has been increasing worldwide. Among these power stations tidal current power plant requires strong current generated by the topographic characteristics of the ocean floor. Uldolmok waterway producing very strong current is an ideal location for a tidal current power generation. However the occurrence of anthropogenic underwater noise generated by the tidal current power station may affect the marine environment. Therefore, it is necessary to evaluate the noise radiated from the station and predict the range influenced by the radiated noise. In this paper, the measurements of radiated noise spectrum level by the tidal current power station are presented, and the source level per unit area is estimated. Finally, the propagation properties of the radiated noise in the Uldolmok waterway is evaluated from the model simulation using the parabolic equation method, RAM.

Numerical Simulation of Tidal Currents of Asan Bay Using Three-Dimensional Flow Modeling System(FEMOS) (3차원 흐름 모델링시스템(FEMOS)을 이용한 아산만 조류모의)

  • 정태성;김성곤;강시환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.151-160
    • /
    • 2002
  • A modeling system for three-dimensional flow (FEMOS) has been developed and applied to simulate the tidal currents of Asan Bay. The system can consider tidal flats changing with time and uses a finite element method that can adapt coastline change effectively. The simulation results for Asan Bay with large tidal flats, shallow water depth and high tidal range showed good agreements with the observed currents of long-term variations at the medium layer and short-term variations of vertical profiles. Based on the simulated tidal currents, the horizontal distributions of bottom shear stress were calculated and showed close relation with the change of bottom topography. The system can be used widely to study coastal circulation in the coastal region with complex geography.

Foramniferal Characteristics in the Ganghwa Tidal Flat (강화 남부 갯벌의 유공충 특성)

  • Woo, Han Jun;Lee, Yeon Gyu
    • Journal of Wetlands Research
    • /
    • v.8 no.3
    • /
    • pp.51-65
    • /
    • 2006
  • Surface sediments for sedimentary analyses were sampled at 199 stations in the study area in August 2003. The surface sediments consisted of six sedimentary facies. Generally, sandy mud sediments dominated in the southern tidal flat of Ganghwa Island and sand sediments dominated in channel and subtidal zones of the western part of Ganghwa Island. The area of sandy mud sediment extended to eastward tidal flat compared to sedimentary facies in August 1997. In 30 surface sediment samples from the Ganghwa tidal flat and subtidal zone, 61 species were recorded in total assemblages, including 34 species of living population. Ammonia beccarii and Elphidium etigoense in living population and Ammonia beccarii, Elphidium etigoense, Jadammina sp. and Textularia earlandi in total assemblage were widely distributed. Generally, relatively large numbers of species and high values of species diversity occurred in the area of western part of tidal flat. Cluster analysis of total assemblages discriminates four biofacies. Biofacies 1 indicated eastern part of the tidal flat and biofacies 4 indicated western part of the tidal flat. Biofacies 3 were transitional zone between biofacies 1 and 4.

  • PDF

Two-Dimensional Hydraulic and Numerical Modeling of tidal Currents in Chinhae Bay (鎭海灣 潮流의 2차월 水利 및 數値 모델링)

  • 김차겸;장선덕
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.83-94
    • /
    • 1994
  • Two-dimensional tidal and tidal residual currents in Chinhae Bay are investigated by field observations, hydraulic and numerical experiments. The results of hydraulic and numerical model experiments roughly coincide with the field measurements. Maximum tidal currents during the spring and neap tides in Kaduk and Kyunnaeryang channel and the central channel of Chinhae Bay are strong as 90 to 110 and 30 to 40 cm/s respectively, and strong tidal residual currents having numerous eddies take place. Maximum tidal currents during the spring and neap tides in the western and northern parts of the bay are weak as below 30 and 10 cm/s respectively, and also tidal residual currents are relatively weak. Tidal residual currents in the northern part of Kajo-do go toward the north, whereas the currents in the southern part move down the bay, and the currents rotating clockwise occur around Bu-do. The surface currents in the bay depend strongly on the wind and river inflow, and such phenomena are more remarkable during he neap tide than the spring tide.

  • PDF

Dynamic Behavior of Floating Tidal Current Power Device Considering Turbine Specifications (터빈 특성을 고려한 부유식 조류발전장치의 운동성능 고찰)

  • Jo, Chul-Hee;Hwang, Su-Jin;Park, Hong-Jae;Kim, Myeong-Joo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.427-432
    • /
    • 2018
  • Tidal current power is one of the energy sources of the ocean. Electricity can be generated by converting the flow energy of the current into the rotational energy of a turbine. Unlike tidal barrage, tidal current power does not require dams, which have a severe environmental impact. A floating-type tidal current power device can reduce the expensive support and installation cost, which usually account for approximately 41% of the total cost. It can also be deployed in relatively deep water using tensioned wires. The dynamic behavior of a floater and turbine force are coupled because the thrust and moment of the turbine affect the floater excursion, and the motion of the floater can affect the incoming speed of the flow into the turbine. To maximize the power generation and stabilize the system, the coupled motion of the floater and turbine must be extensively analyzed. However, unlike pile-fixed devices, there have been few studies involving the motion analysis of a moored-type tidal current power device. In this study, the commercial program OrcaFlex 10.1a was used for a time domain motion analysis. In addition, in-house code was used for an iterative calculation to solve the coupled problems. As a result, it was found that the maximum mooring load of 200 kN and the floater excursion of 5.5 m were increased by the turbine effect. The load that occurred on the mooring system satisfied the safety factor of 1.67 suggested by API. The optimum mooring system for the floating tidal current power device was suggested to maximize the power generation and stability of the floater.

Assessment of Theoretical Annual Energy Production in the Coast of South Korea Using Tidal Current Energy Converters Utilizing Flow Induced Vibration (한국 해안에서 유동유발진동 현상을 이용한 조류에너지 발전기술의 이론적 연간 발전량 산정연구)

  • Kim, Eun Soo;Oh, Kwang Myung;Park, Hongrae
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2019
  • The Korean government is aiming to produce 20% of the electricity using renewable energy sources by 2030. Ocean renewable energy sources which are abundant in South Korea can do an important role to achieve the goal. This paper introduces a tidal current energy converter utilizing flow induced vibrations which can efficiently work even in the currents slower than 1.0m/s and suggests optimal designs of the tidal energy converter based on speeds of the tidal currents in seven different coastal regions in South Korea. Moreover, the theoretical annual energy production by the tidal converter is estimated at theses costal areas. The total amount of the annual energy production by the tidal energy converter is predicted as 221.77 TWh which is equivalent to 42.3% of the electric consumption of South Korea in 2013. The result shows that the tidal current energy converter can be an important role to achieve the goal of the Korean government.

Analysis of Sedimentary Environment and Micro-Landform Changes Afterthe Construction of Artificial Structuresin the Tidal Flat of Anmyeondo Gagyeongju, Western Coast of Korea (인공구조물 건설 후 안면도 가경주 간석지의 퇴적환경 및 미지형변화 분석)

  • JANG, Dong-Ho;Ryu, Ju-Hyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.31-45
    • /
    • 2018
  • This study investigated the characteristics of sedimentary environment changes across a tidal flat in Gagyeongju of Anmyeondo Island. We performed a spatio-temporal analysis on the grain sizes composition of sediments and micro-landform changes during the winter from 2013 to 2016. The results showed that erosion was a dominant processthroughout the study flat, reducing the surface elevation even by 1 m around the upper sand flat. As a consequence, headlands have formed in the entire region of Gagyeongju village. In addition, erosion quickly progressed along the low-lying subtidal zone and tide way and, in contrast, sedimentation progressed in the mid-elevation tidal flat. We posit that a jetty, which had been constructed as a pier facility on the eastern part of the study area, interfered with the flow of tidal current, thereby enhancing these erosional processes. This is because such interference can block the supply of fine-textured sediments from the nearby Cheonsu Bay and therefore reduce surface elevation. According to the surface sediment analysis, the sediments were categorized into 7 sedimentary facies, and generally displayed a high ratio of silt and clay. The result of time-series analysis (2012-2013) showed that the sediments on the tidal flat became fine-grained, and that sorting became worse. However, the sediments on the subtidal zone, embayment and along inside of the jetty tended to be coarse-grained. In conclusion, the tidal flat microlandform change in the study area was caused by a disruption in the seawater circulation due to the jittery construction within the tidal flat, which had a direct effect on erosional and sedimentary environment processes.

A Statistical Assessment of Increasing Tidal Mixing Effects on Water Quality in the Shiwha Coastal Reservoir (시화호 해수유통량 증대에 따른 통계학적 수질 영향 분석)

  • Lee, Bum-Yeon;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.425-432
    • /
    • 2021
  • A tidal power plant (TPP) has been in operation since the end of 2011 to improve the water quality of Shihwa Coastal Reservoir (SCR). Tidal mixing rate increased 5.6 times after the TPP operation so that in this study, its effects on water quality was assessed through statistical analysis of long-term water quality monitoring data. It was found that the increased tidal mixing contributed to solving the hypoxia problem in the bottom water by preventing the summer stratification. The analysis also showed that the increased tidal mixing had different effects depending on the relative concentration difference for each water quality substances between the SCR and the outside of SCR. The average concentrations of some substances (chemical oxygen demand, total phosphorus, chlorophyll-a) with higher concentrations than the outside of SCR decreased due to the dilution effect, but the other substances (total nitrogen, dissolved inorganic nitrogen, dissolved inorganic phosphorus) with lower concentrations compared to the outside ones increased on the contrary. Factor analysis also showed a consistent result that the first factor accounting for the water quality was changed from the organic-related substances to the nutrient-related substances after the increased tidal mixing. These results imply that the focus of future water quality management needs shifting from the organic substances to the nutrients, particularly dissolved inorganic nutrients. Considering the effect of inflow seawater on the nutrients, the management area should be extended to cover not only SCR but also a certain area outside of SCR.