• Title/Summary/Keyword: TiSiN

Search Result 743, Processing Time 0.025 seconds

Interface Reactions and Diffusion of Si3N4/Ti and Si3N4/TiAl Alloys (Si3N4/Ti와 Si3N4/TiAl합금의 계면반응 및 확산 거동)

  • Choi, Kwang Su;Kim, Sun Jin;Lee, Ji Eun;Park, Joon Sik;Lee, Jong Won
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.603-608
    • /
    • 2017
  • $Si_3N_4$ is a ceramic material attracting attention in many fields because of its excellent abrasion resistance. In addition, Ti and TiAl alloys are metals used in a variety of high temperature environments, and have attracted much attention because of their high strength and high melting points. Therefore, study of the interface reaction between $Si_3N_4/Ti$ and $Si_3N_4/TiAl$ can be a useful practice to identify phase selection and diffusion control. In this study, $Si_3N_4/Ti_5Si_3+TiN/TiN/Ti$ diffusing pairs were formed in the $Si_3N_4/Ti$ interfacial reaction and $Si_3N_4/TiN(Al)/Ti_3Al/TiAl$ diffusion pathway was identified in the $Si_3N_4/TiAl$ interfacial reaction. The diffusion layers of the interface reactions were identified and, to investigate the kinetics of the diffusion layer, the integrated diffusion coefficients were estimated.

A study of Compositional range of Ti-Si-N films for the ULSI diffusion barrier layer (ULSI 확산억제막으로 적합한 Ti-Si-N의 조성 범위에 관한 연구)

  • 박상기;강봉주;양희정;이원희;이은구;김희재;이재갑
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.321-327
    • /
    • 2001
  • Ti-Si-N films obtained by using RF reactive sputtering of targets with various Ti/Si ratios in a $N_2(Ar+N_2)$ gas mixture have been investigated in terms of films resistivity and diffusion barrier performance. The chemical bonding state of Si in the Ti-Si-N film which contained a higher Si content was in the form of amorphous $Si_3N_4$, producing increased film resistivity with increased $N_2$flow rate. Lowering the Si content in the deposited Ti-Si-N film favored the formation of crystalline TiN even at low $N_2$flow rates, and leads to low film resistivity. In addition increasing the N content led to Ti-Si-N films having a higher density and compressive stress, suggesting that the N content in the films appear to be one of the most important factors affecting the diffusion barrier characteristics. Consequently, we proposed the optimum composition in the range of 29~49 at.% of Ti, 6~20 at.% of Si, and 45~55 at.% of N for the Ti-Si-N films having both low resistivity and excellent diffusion barrier performance.

  • PDF

High Temperature Oxidation of TiN, Ti(C,N), TiAlSiN, TiZrAlN, TiAlCrSiN Thin Films (TiN, Ti(C,N), TiAlSiN, TiZrAlN, TiAlCrSiN 박막의 고온산화)

  • Kim, Min-Jeong;Park, Sun-Yong;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.192-192
    • /
    • 2014
  • TiN, Ti(C,N), TiAlSiN, TiZrAlN, TiAlCrSiN 박막을 제조한 후, 이 들의 고온산화 특성을 SEM, EPMA, TGA, TEM, AES 등을 이용하여 조사하고, 산화기구를 제안하였다. 산화속도, 생성되는 산화물의 종류와 분포는 박막의 조성, 산화온도, 산화시간에 따라 변하였다.

  • PDF

Phase Equilibria and Reaction Paths in the System Si3N4-SiC-TiCxN1-x-C-N

  • H.J.Seifert
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.18-35
    • /
    • 1999
  • Phase equilibria in the system Si3N4-TiC-TiCxN1-x-C-N were determined by thermodynamic calculations (CALPHAD-method). The reaction peaction paths for Si3N4-TiC and SiC-TiC composites in the Ti-Si-C-n system were simulated at I bar N2-pressure and varying terpreatures. At a temperature of 1923 K two tie-triangles (TiC0.34N0.66+SiC+C and TiC0.13N0.87+SiC+Si3N4) and two 2-phase fieds (TiCxN1-x+SiC; 0.13

A Study on the Properties of TiN/${TiSi}_{2}$ Bilayer by a Rapid Thermal Anneal in ${NH}_{3}$ Ambient (${NH}_{3}$ 분위기에서 급속열처리에 의한 TiN/${TiSi}_{2}$ 이중구조막의 특성에 대한 고찰)

  • 이철진;성영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.869-874
    • /
    • 1992
  • The physical and electrical properties of TiN/TiSiS12T bilayer were studied. The TiN/TiSiS12T bilayer was formed by rapid thermal anneal in NHS13T ambient after the Ti film was deposited on silicon substrate. The Ti film reacts with NHS13T gas to make a TiN layer at the surface and reacts with silicon to make a TiSiS12T layer at the interface respectively. It was found that the formation of TiN/TiSiS12T bilayer depends on RTA temperature. In this experiment, competitive reaction for TiN/TiSiS12T bilayer occured above $600^{\circ}C$. Ti-rich TiNS1xT layer and Ti-rich TiSiS1xT layer and Ti-rich TiSiS1xT layer were formed at $600^{\circ}C$. stable structure TiN layer TiSiS12T layer which has CS149T phase and CS154T phase were formed at $700^{\circ}C$. Both stable TiN layer and CS154T phase TiSiS12T layer were formed at 80$0^{\circ}C$. The thickness of TiN/TiSiS12T bilayer was increased as the thickness of deposited Ti film increased.

  • PDF

Microstructural and Mechanical Characterization of Nanocomposite Ti-Al-Si-N Films Prepared by a Hybrid Deposition System (하이브리드 증착 시스템에 의해 합성된 나노복합체 Ti-Al-Si-N 박막의 미세구조와 기계적 특성)

  • 박인욱;최성룡;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • Quaternary Ti-Al-Si-N films were deposited on WC-Co substrates by a hybrid deposition system of arc ion plating (AIP) method for Ti-Al source and DC magnetron sputtering technique for Si incorporation. The synthesized Ti-Al-Si-N films were revealed to be composites of solid-solution (Ti, Al, Si)N crystallites and amorphous Si3N4 by instrumental analyses. The Si addition in Ti-Al-N films affected the refinement and uniform distribution of crystallites by percolation phenomenon of amorphous silicon nitride, similarly to Si effect in TiN film. As the Si content increased up to about 9 at.%, the hardness of Ti-Al-N film steeply increased from 30 GPa to about 50 GPa. The highest microhardness value (~50 GPa) was obtained from the Ti-Al-Si-N film haying the Si content of 9 at.%, the microstructure of which was characterized by a nanocomposite of nc-(Ti,Al,Si) N/a$-Si_3$$N_4$.

Synthesis and Mechanical Properties of nc-TiN/a-Si3N4 Nanocomposite Coating Layer (나노복합체 nc-TiN/a-Si3N4 코팅막의 합성 및 기계적 성질)

  • 김광호;윤석영;김수현;이건환
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.49-49
    • /
    • 2002
  • 독립된 티타늄(Ti)과 실리콘(Si) 타켓을 사용하여 DC reactive magnetron co-sputtering 공 정으로 Ti-Si-N 코탱막을 SKD 11 합금강위에 합성하였다. 고분해능 TEM 및 XPS 분석들로부터 Ti-Si-N 코탱막은 나노미터 크기의 TiN결정체들이 비정질 Si3N4 기지에 분산된 나노복합체의 마세구조를 냐타내었다. 코탱막의 경도는 11 at.%의 Si 함량에서 39 GPa의 최 고 경도값을 나타내었고 이 경우 미셰조직은 5nm 크기의 미세한 TiN 결정이 비정절상의 기지에 균일하게 분포된 특성을 보였다 .. Ti-Si-N 박막내에 Si 함량이 증가할수록 TiN 결정 상들은 다배향성을 나타내었고 크기가 감소하였으며 비정질상에 의해 완전히 둘려싸언 형상 으로 변화하였다. 높은 Si 함량에서는 질소 소스의 부족현상에 의하여 코팅막내에서 free Si 가 나타났다. 상대습도가 증가함에 따라 Ti-Si-N 코탱막의 마찰계수와 마모량이 현저하게 감소하였다. 강재에 대한 Ti-Si-N 코팅막의 마모거동에 있어서 Si02 냐 Si(OH)2 같은 얇은 윤활막의 형성이 중요한 역할을 하는 것으로 판단되어졌다.

  • PDF

Microstructure and Mechanical Properties of Ti-Si-C-N Coatings Synthesized by Plasma-Enhanced Chemical Vapor Deposition (PECVD 로 합성된 Ti-Si-C-N 코팅막의 미세구조 및 기계적 성질)

  • Hong, Yeong-Su;Kim, Gwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.83-85
    • /
    • 2008
  • 4성분계 Ti-Si-C-N 코팅막은 $TiCl_4$, $SiH_4$, $CH_4$, Ar, 그리고 $N_2$ 가스 혼합체를 이용하여 RF-PECVD 기법에 의해 Si 와 AISI 304 기판위에 합성하였다. Ti-C-(0.6)-N(0.4) 조성의 코팅막에 Si를 첨가함으로 Ti(C,N) 결정질은 줄어들고, Si3N4 및 SiC 비정질상이 나타났다. Ti-Si(9.2 at.%)-C-N의 조성에서 나노 크기의 nc-Ti(C,N) 결정질을 비정질 a-Si3N4/SiC가 둘러싸고 있는 형태의 나노 복합체를 나타내었다. 경도 24 Gpa의 Ti-C-N 코팅막은 Si를 첨가함으로 Ti-Si(9.2 at.%)-C-N 조성에서 46 Gpa의 최고 경도를 나타내었으며, 마찰계수의 경우에도 Ti-C-N 코팅막에 Si를 첨가함으로 크게 낮아졌다.

  • PDF

Effects of the thin SiO$_{2}$ film at the Ti-Si interface on the formation of TiN/TiS$i_2$ bilayer (Ti-Si 계면의 얇은 산화막이 TiN/TiS$i_2$ 이중구조막 형성에 미치는 영향)

  • 이철진;성만영;성영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.242-248
    • /
    • 1996
  • The properties of TiN/TiSi$_{2}$ bilayer formed by a rapid thermal annealing is investigated when thin SiO$_{2}$ film exists at the Ti-Si interface. The competitive reaction for the TiN/TiSi_2 bilayer occurs above 600 .deg. C. The thickness of the TiSi$_{2}$ layer decreases with increasing SiO$_{2}$ film thickness and also decreases with increasing anneal temperture When the competitive reaction for the TiN/TiSi$_{2}$ bilayer is occured by rapid thermal annealing, the composition of TiN layer represents TiN$_{x}$O$_{y}$ due to the SiO$_{2}$ layer at the Ti-Si interface but the structures of the TiN and TiSi$_{2}$ layers were not changed.d.d.

  • PDF

Characteristics of $TiN/TiSi_2$ Contact Barrier Layer by Rapid Thermal Anneal in $N_2$ Ambient (질소 분위기에서 순간역처리에 의해 형성시킨 $TiN/TiSi_2$ Contact Bsrrier Lauer의 특성)

  • 이철진;허윤종;성영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.633-639
    • /
    • 1992
  • The physical and electrical properties of TiN/TiSiS12T contact barrier were studied. The TiN/TiSiS12T system was formed by rapid thermal anneal in NS12T ambient after the Ti film was deposited on silicon substrate. The Ti film reacts with NS12T gas to make a TiN layer at the surface and reacts with silicon to make a TiSiS12T layer at the interface respectively. It was found that the formation of TiN/TiSiS12T system depends on RTA temperature. In this experiment, competitive reaction for TiN/TiSiS12T system occured above $600^{\circ}C$. Ti-rich TiNS1xT layer and Ti-rich TiSiS1xT layer were formed at $600^{\circ}C$. stable structure TiN layer and TiSiS1xT layer which has CS149T phase and CS154T phase were formed at $700^{\circ}C$. Both stable TiN layer and CS154T phase TiSiS12T layer were formed at 80$0^{\circ}C$. The thickness of TiN/TiSiS12T system was increased as the thickness of deposited Ti film increased.

  • PDF