• Title/Summary/Keyword: TiO2 분말

Search Result 565, Processing Time 0.031 seconds

Fabrication and Characterization of Photocatalytic TiO2 prepared by Polymer Complex Solution Method (복합고분자 용액법을 이용한 TiO2 광촉매 제조 및 특성 평가)

  • Jang Jeong-Wook;Jeong Young-Keun;Kim Tae-Oh
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.249-254
    • /
    • 2005
  • Titanium dioxide was prepared by Polymer Complex Solution Method(PCSM) according to the mole ratio of Titanium (IV) isopropoxide(TTIP)/solvent and polymer(Poly Ethylene Glycol). Polymer electrolytes were usually made by dispersing preproduced ceramic nanoparticles in a polymer matrix. Using this method, pure and nano-sized $TiO_2$ powder was synthesized through a simple procedure and polymer entrapment route. At the optimum amount of the polymer, the titanium ions are dispersed in solution and a homogeneous polymeric network is formed. The maximum intensity of anatase phase of $TiO_2$ was achieved by calcining at $500^{\circ}C$ for 2h. The synthesized $TiO_2$ powders were nano-sized and the average size was about 50nm. Anatase/Rutile ratio of the synthesized $TiO_2$ was 70%/30%.

Effect of Cobalt Oxide on Carbothermal Reduction of Spray Dried Titanium-Cobalt-Oxygen Based Oxide Powder (분무건조법에 의해 제조된 Ti-Co-O계 산화물 분말의 환원/침탄반응에 미치는 코발트 산화물의 영향)

  • Lee, Gil-Geun;Kim, Chan-Young
    • Journal of Powder Materials
    • /
    • v.12 no.5 s.52
    • /
    • pp.336-344
    • /
    • 2005
  • In the present study, the focus is on the effect of cobalt oxide powder in the carbothermal reduction of the titanium-cobalt-oxygen based oxide powder by solid carbon for the optimizing synthesis process of ultra fine TiC/Co composite powder. The titanium-cobalt-oxygen based oxide powder was prepared by the combination of the spray drying and desalting processes using the titanium dioxide powder and cobalt nitrate as the raw materials. The titanium-cobalt-oxygen based oxide powder was mixed with carbon black, and then this mixture was carbothermally reduced under flowing argon atmosphere. Changes in the phase structure and thermal gravity of the mixture during carbothermal reduction were analysed using XRD and TGA. Titanium-cobalt-oxygen based oxide powder desalted at $600^{\circ}C$ had a mixture of $TiO_2\;and\;Co_{3}O_4$. And the one desalted at $800^{\circ}C$ had a mixture of $TiO_2\;and\;CoTiO_3$. In the case of the former powder, the reduction of cobalt oxide powder in the titanium-cobalt-oxygen based oxide powder occurred at lower temperature than the latter one. However, the carbothermal reduction of titanium dioxide powder in the titanium-cobalt-oxygen based oxide powder with a mixture of $TiO_2\;and\;Co_{3}O_4$ occurred at higher temperature than the one with a mixture of $TiO_2\;and\;CoTiO_3$. And also, the former powder showed a lower TiC formation ability than the latter one.

The Effect of SnO2 Addition on Sintering Behaviors in a Titanium Oxide-Copper Oxide System

  • Lee, Ju-Won;Oh, Kyung-Sik;Chung, Tai-Joo;Paek, Yeong-Kyeun
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.357-362
    • /
    • 2022
  • The low-temperature sinterability of TiO2-CuO systems was investigated using a solid solution of SnO2. Sample powders were prepared through conventional ball milling of mixed raw powders. With the SnO2 content, the compositions of the samples were Ti1-xSnxO2-CuO(2 wt.%) in the range of x ≤ 0.08. Compared with the samples without SnO2 addition, the densification was enhanced when the samples were sintered at 900℃. The dominant mass transport mechanism seemed to be grain-boundary diffusion during heat treatment at 900℃, where active grain-boundary diffusion was responsible for the improved densification. The rapid grain growth featured by activated sintering was also obstructed with the addition of SnO2. This suggested that both CuO as an activator and SnO2 dopant synergistically reduced the sintering temperature of TiO2.

The Effect of the Precursor Delivery Rate on low Pressure Flame Synthesis of $n-TiO_2$ Powder ($n-TiO_2$ 분말의 저압화염 합성에 미치는 전구체 전달속도의 영향)

  • 김태형
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.75-80
    • /
    • 1999
  • The formation of $n-TiO_2$ powder by oxidation of Ti-ethoxied vapor in a flat flame burner reactor maintained under 20 torr has been studied. The produced powder were characterized in terms of crystal structure, chemical composition by XRD and TEM. The results showed that the powder consisted of loose agglomerated anatase and rutile particles and their size were about 10 nm and 20 nm, respectively. In the course of synthesis, changes of the flame color were happened to each condition during heating up the bubbler. The flame color transition phenomena reveled that a critical precursor delivery rate was needed for the powder formation (obtainable powder yield). The critical precursor delivery rate was estimated by a simple function of the bubbler temperature and the carrier gas flow rate. The critical precursor delivery rate was reviewed as an important variable of the nanopowder synthesis.

  • PDF

Chemistry and Rietveld Structure Refinement of Nb-rich Perovskite, $Ca_2NbFe^{3+}O_6$ (네오비움 페롭스카이트($Ca_2NbFe^{3+}O_6$)의 화학조성 및 리트벨트 구조분석 연구)

  • ;Frank C. Hawthorne
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2002
  • Chemical analyses and Rietveld structural refinement with powder X-ray diffraction data were done for Nb-rich perovskite, named latrappite ($Ca_2NbFe^{3+}O_6$)from the Oka, Quebec, Canada. Latrappite is shown to be a member of a continuous solid solution of $CaTiO_3-NaNbO_3-Ca_2NbFe^{3+}O_6$ and approximately $(Ca_{1.5}Na_{0.4})\;(Nb_{0.1}Ti_{0.6}Fe_{0.4})O_6$ in composition. The crystal structure of latrappite, determined by Rietveld refinement, is similar to that of perovskite ($CaTiO_3$). It differs in that replacement of Ti by Nb and $Fe^{3+}$ results in greater distortion and tilting of the $TiO_6$ framework octahedra relative to $CaTiO_3$. Revised unit-cell parameters of latrappite are a=5.4474(4), b=5.5264(4), c=7.7519(5) ${\AA},\;V=233.4(3){\AA}^3$ space group Pbnm.

Thermoelectric Properties of the n-type Bi2(Te0.9Se0.1)3 Processed by Hot Pressing with Dispersion of 0.5 vol% TiO2 Nanopowders (0.5 vol% TiO2 나노분말을 분산시킨 n형 Bi2(Te0.9Se0.1)3 가압소결체의 열전특성)

  • Park, D.H.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.15-19
    • /
    • 2013
  • The n-type $Bi_2(Te_{0.9}Se_{0.1})_3$ powders, which were fabricated by melting/grinding method and dispersed with 0.5 vol% $TiO_2$ nanopowders, were hot-pressed in order to investigate the effects of $TiO_2$ dispersion on the thermoelectric properties of the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$. Excellent thermoelectric properties such as a maximum figure-of-merit of $2.93{\times}10^{-3}/K$ and a maximum dimensionless figure-of-merit of 1.02 were obtained for the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$. With dispersion of 0.5 vol% $TiO_2$ nanopowders, the maximum figure-of-merit and the maximum dimensionless figure-of-merit decreased to $2.09{\times}10^{-3}/K$ and 0.68, respectively.

Synthesis of TiC/Co Composite Powder by the Spray Thermal Conversion of Metallic Salt Solution (금속염용액의 분무열분해에 의한 TiC/Co복합분말 제조)

  • 이길근;문창민;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.228-234
    • /
    • 2003
  • In the present study, the focus is on the synthesis of titanium carbide/cobalt composite powder by the spray thermal conversion process using metallic salt solution as the raw materials. Two types of oxide powders of Ti-Co-O system were prepared by the spray drying of two types of metallic salt solutions : titanium chloride-cobalt nitrate and $TiO_2$ powder-cobalt nitrate solutions. These oxide powders were mixed with carbon black, and then these mixtures were carbothermal reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixtures during carbothermal reduction were analysed using XRD and TG-DTA. In the case of using the titanium chloride-cobalt nitrate solution, it could not be obtained TiC/Co composite powder due to contamination of the impurities during the spray drying of the solution. However, in tile case of using the $TiO_2$ powder-cobalt nitrate scullion, TiC-15 wt. %Co composite powder could be synthesized by the spray thermal conversion process. The synthesized TiC-15 wt. %Co composite powder at 120$0^{\circ}C$ for 2 hours has average particle size of 150 nm.

Fabrication of $Ti(Al,\;O)-Al_2O_3$ Powder Feedstock for Thermal Spraying and Evaluation of the Composite Coating

  • Cao, Peng;Gabbitas, Brian;Zheng, Ling;Zhang, Deliang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.49-50
    • /
    • 2006
  • [ $Ti(Al,\;O)-Al_2O_3$ ] composite powders were produced by high energy mechanical milling of a mixture of Al and $TiO_2$ powders followed by a combustion reaction. The powders were subsequently thermally sprayed on H13 steel substrates. Microstructural examination was conducted on the composite powders and thermally sprayed coatings, using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The performance of the coatings was evaluated in terms of micro-hardness and thermal fatigue. The thermally sprayed coatings performed very well in the preliminary thermal fatigue tests and showed no wetting tendency to molten aluminum.

  • PDF