• 제목/요약/키워드: TiO$_2$/UV

검색결과 761건 처리시간 0.046초

$UV-TiO_2$ 광촉매 반응기에 의한 미생물의 살균효과 (Killing Effects of $UV-TiO_2$ Photocatalytic System on Microorganisms)

  • 김중곤;신용국;이영상;김용호;김시욱
    • 미생물학회지
    • /
    • 제37권2호
    • /
    • pp.130-136
    • /
    • 2001
  • 두가지 형태(1단 반응기와 2단 반응기)의 UV-$TiO_2$광촉매 시스템과 3가지 형태의 $TiO_2$가 코팅된 촉매를 이용하여 미생물에 대한 살균효과를 살펴보았다. 첫번째 형태는 석영관에 $TiO_2$가 박막증착된 것이고 두번째 형태는 glass bead 표면에 $TiO_2$가 코팅된 형태이며 세번째는 alginate bead에 $TiO_2$가 혼합된 형태이다. 1분동안 UV를 조사하였을때 1단 반응기에서 $TiO_2$가 박막증착된 석영관과 $TiO_2$가 코팅된 glass bead의 살균효율은 각각 63.2%와 89.9%이었다. 반응기에 기포를 주입했을 때의 살균효율은 glass bead의 경우 95%로 기포를 주입하지 않았을 때의 90.6%보다 휠씬 효과적이었다. 기포를 주입하면서 광촉매로 alginate bead에 $TiO_2$가 혼합된 것을 이용하였을 경우의 살균효율은 86%이었다. $TiO_2$가 코팅된 glass bead를 이용한 반응기에 기포를 주입하면서 $H_2$$O_2$를 처리하였을 때의 살균정도는 미량농도에서도 매우 효과적이었다. 1단 반응기보다 2단 반응기에서의 살균효율이 더욱 증가하였으며 E. coli에 대한 살균효과가 S. cerevisiae보다 더 높게 나타났다.

  • PDF

UV/H2O2, UV/TiO2 시스템에서 염료의 색도 및 COD 제거 (Elimination of COD and Color of Dye by UV/H2O2, UV/TiO2 System)

  • 김계월;박정미;심수진;이희정;이동석
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.51-56
    • /
    • 2000
  • The Photocatalytic decolorization and degradation of commercial dyes were studied using a batch reactor. Degussa P25 titanium dioxide and $H_2O_2$ were used as the photocatalyst and proved to be effective for dyes degradation when they were irradiated with UV light. The light source was a 20W low pressure mercury lamp. Three different kinds of dyes, such as direct dye(congo red), acid dye (acid black) and disperse dye(disperse blue) were tested. Extending the UV only treatment up to 120min, direct dye was decolorized to 60% and degraded to 30% as COD. On the other side, acid and disperse dyes were eliminated less than 10% as color and COD. But, color and COD were eliminated about 90% for all of the three dyes by $UV/H_2O_2$ system. And then the most effective decolorization was done for direct dye with 96% removal efficiency by $UV/TiO_2$ system at 120min with 500mg/L of $TiO_2$.

  • PDF

광전기촉매 공정과 전기/UV 공정을 이용한 Rhodamine B의 색 제거 (Decolorization of a Rhodamine B Using Photoelectrocatalytic and Electrolytic/UV Process)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.1023-1032
    • /
    • 2008
  • The feasibility study of the application of the photoelectrocatalytic and electrolytic/UV decolorization of Rhodamine B (RhB) was investigated in the photoelectrocatalytic and electrolytic/UV process with $TiO_2$ photoelectrode and DSA (dimensionally stable anode) electrode. Three types of $TiO_2$ photoelectrode were used. Thermal oxidation electrode (Th-$TiO_2$) was made by oxidation of titanium metal sheet; sol-gel electrode (5G-$TiO_2$) and powder electrode (P-$TiO_2$) were made by coating and then heating a layer of titania sol-gel and slurry $TiO_2$ on titanium sheet. DSA electrodes were Ti and Ru/Ti electrode. The relative performance for RhB decolorization of each of the photoelecoodes and DSA electrodes is: Ru/Ti > Ti > SG-$TiO_2$ > Th-$TiO_2$. It was observed that photoelectrocatalytic decolorization of RhB is similar to the sum of the photocatalytic and electrolytic decolorization. Therefore the synergetic effect was not showed in pthotoelectrocatalytic reaction. $Na_{2}SO_{4}$ and NaCl showed different decolorization effect between pthotoelectrocatalytic and electrolytic/UV reaction. In the presence of the NaCl, RhB decolorization of Ru/Ti DSA electrode was higher than that of the other photoelectrode and Ti electrode. Optimum current, NaCl dosage and UV lamp power of the electrolytic/UV process (using Ru/Ti electrode) were 0.75 A, 0.5 g/L and 16 W, respectively.

The Effect of SiO2 Shell on the Suppression of Photocatalytic Activity of TiO2 and ZnO Nanoparticles

  • Lee, Min Hee;Patil, Umakant Mahadev;Kochuveedu, Saji Thomas;Lee, Choon Soo;Kim, Dong Ha
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3767-3771
    • /
    • 2012
  • In this study, we investigate the potential use of $TiO_2@SiO_2$ and $ZnO@SiO_2$ core/shell nanoparticles (NPs) as effective UV shielding agent. In the typical synthesis, $SiO_2$ was coated over different types of $TiO_2$ (anatase and rutile) and ZnO by sol-gel method. The synthesized $TiO_2@SiO_2$ and $ZnO@SiO_2$ NPs were characterized by UV-Vis, XRD, SEM and TEM. The UV-vis absorbance and transmittance spectra of core@shell NPs showed an efficient blocking effect in the UV region and more than 90% transmittance in the visible region. XRD and SAED studies confirmed the formation of amorphous $SiO_2$ coated over the $TiO_2$ and ZnO NPs. The FESEM and TEM images shows that coating of $SiO_2$ over the surface of anatase, rutile $TiO_2$ and ZnO NPs resulted in the increase in particle size by ~30 nm. In order to study the UV light shielding capability of the samples, photocatalytic degradation of methylene blue dye on $TiO_2@SiO_2$ and $ZnO@SiO_2$ NPs was performed. Photocatalytic activity for both types of $TiO_2$ NPs was partially suppressed. In comparison, the photocatalytic activity of ZnO almost vanished after the $SiO_2$ coating.

TiO₂/H₂O₂/UV 공정을 이용한 염색폐수처리에 관한 연구 (A Study on the Treatment of Dyeing Wastewater Using TiO₂/H₂O₂/UV Processes)

  • 조일형;정효준;박경렬;성기석;이용규;이홍근
    • 환경위생공학
    • /
    • 제15권4호
    • /
    • pp.27-27
    • /
    • 2000
  • In order to treat the dyeing wastewater, the UV/TiO₂/H₂O₂ system was investigated, and proper pretreatment methods were examined to reduce the load on the system considering economical and technical efficiency. The results of this study were as follows: 1.UV/TiO₂/H₂O₂ system with pretreatment process was adopted, the result of Chemical coagulation and pH control units was pH 11→ coagulation → pH 4 and the optimum dosage of FeCl₃ was 600㎎/ℓ 2. Proper dosage of TiO₂in the UV/TiO₂/H₂O₂ system with pretreatment process was 2g/ℓ and H₂O₂ was 1000㎎/ℓ, UV contact time was 20min to get below 200㎎/ℓ of $COD_{Cr}$

태양광/광촉매를 이용한 오폐수 살균특성 (Disinfection Characteristic of Sewage Wastewater Treatment Using Solar Light/TiO2 Film System)

  • 조일형;이내현;안상우;김영규;이승목
    • 한국환경과학회지
    • /
    • 제15권7호
    • /
    • pp.677-688
    • /
    • 2006
  • Currently, the application of $TiO_2$ photocatalyst has been focused on purification and treatment of wastewater. However, the use of conventional $TiO_2$ slurry photocatalyst results in disadvantage of stirring during the reaction and of separation after the reaction. And the usage of artificial UV lamp has made the cost of photocatalyst treatment system high. Consequently, we studied that solar light/$TiO_2$ film system was designed and developed in order to examine disinfection characteristics of sewage wastewater treatment. The optimum conditions for disinfection such as solar light intensity, characteristic of sewage wastewater, amounts of $TiO_2$ and comparison of solar ligth/$TiO_2$ systems with UV light/$TiO_2$ system was examined. The results are as follows: (1) photocatalytic disinfection process with solar light in the presence of $TiO_2$ film more effectively killed total coliform (TC) than solar light or $TiO_2$ film absorption only. (2) The survival ratio of TC and residual ratio of organic material (BOD, CODcr) decreased with remain resistant material. (3) The survival ratio of TC and residual ratio of organic material (BOD, CODcr) decreased with the increase of amounts of $TiO_2$. (4) TC survival ratio decreased linearly with increasing UV light intensity. (5) The disinfection effect of solar light/$TiO_2$ slurry system decreased more than UV light/$TiO_2$ film systems. (6) The disinfection reaction followed first-order kinetics. We suggest that solar light instead of using artificial UV light was conducted to investigate the applicability of alternative energy source in the disinfection of TC and the degradation of organic material.

Preparation of SiO2-Coated TiO2 Composite Materials with Enhanced Photocatalytic Activity Under UV Light

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1895-1899
    • /
    • 2012
  • $SiO_2$-coated $TiO_2$ composite materials with enhanced photocatalytic activity under UV light was prepared by a simple catalytic hydrolysis method. XRD, TEM, UV-vis spectroscopy, Photoluminescence, FT-IR and XP spectra were used to characterize the prepared samples. The obvious shell-core structure was shown for obtained $SiO_2$@$TiO_2$ sample. The average thickness of the $SiO_2$ coating layer was 2-3 nm. The interaction between $SiO_2$ and $TiO_2$ restrained the recombination of excited electrons and holes. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive dyestuff, methylene blue, under UV light. The photocatalytic activity of $SiO_2$@$TiO_2$ was much higher than that of P25 and mechanical mixing sample $SiO_2/TiO_2$. The possible mechanism for the photocatalysis was proposed.

Sulfamethoxazole의 오존산화처리에 관한 연구 (A Study on Ozonation of Sulfamethoxazole)

  • 이철규
    • 한국물환경학회지
    • /
    • 제35권6호
    • /
    • pp.459-469
    • /
    • 2019
  • The ozonation of sulfamethoxazole (SMX) was performed at 20℃ using a pilot scale countercurrent bubble column reactor. Ozonation systems were combined with UV irradiation and TiO2 addition. As the oxidation reaction proceeded in each treatment system, the pH of the sample decreased and in the O3/UV/TiO2 system, the pH change was the largest from 4.54 to 2.02. Under these experimental conditions, the scavenger impact of carbonate is negligible. The highest COD and TOC removal rate was observed in the O3/UV/TiO2 system due to the UV irradiation and the photocatalytic effect of TiO2. Also, the highest mineralization ratio(ε) value is 0.2 in the O3/UV/TiO2 system, which means theoxidation capacity of the systems. The highest SMX degradation rate constants calculated by COD and TOC values (COD and TOC) were 2.15 × 10-4 sec-1 and 1.00 × 10-4 sec-1 in the O3/UV/TiO2 system, respectively. The activation energy (Ea) of ozone treatment follows the Arrhenius law. It was calculated based on COD and TOC. Each activation energy decreased in order of single O3> O3/TiO2> O3/UV > O3/UV/TiO2 system. The result showed that ΔH is more effective than ΔS in each SMX ozontaionsystem, that is characteristic of the common oxidation reaction.

4-nonylphenol의 오존산화 처리반응에 관한 연구 (A Study on Ozonation of 4-nonylphenol)

  • 이철규
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.736-743
    • /
    • 2017
  • In this study, 4-nonylphenol (4-NP), an endocrine disrupting chemical, was removed by ozone treatment processes under the various experimental conditions including UV irradiation, $TiO_2$ addition. The ozone flow rate and concentration were maintained at $1.0L{\cdot}min^{-1}$ and $70{\pm}5mg{\cdot}L^{-1}$. The pH, COD and TOC of the samples were obtained every 10 minutes for 60 minutes in laboratory scale batch reactor. We found that the combination of UV irradiation and $TiO_2$ addition for ozonation improves the removal efficiency of COD and TOC in 4-NP aqueous solution. In case of the $O_3/UV/TiO_2$ system, COD and TOC were greatly reduced to 85.3 ~ 94.0% and 89.2 ~ 97.2%, respectively. 4-NP degradation rate constants, $k_{COD}$ and $k_{TOC}$, were calculated based on the COD and TOC values. Significantly, $k_{COD}$ and $k_{TOC}$ were improved in the $O_3/UV/TiO_2$ treatment process compared with single $O_3$ process, because the oxidation and the mineralization of 4-NP were increased by generating of the hydroxyl radical. The $k_{COD}$ and $k_{TOC}$ were obtained to be $5.81{\times}10^{-4}{\sim}10.8{\times}10^{-4}sec^{-1}$ and $11.9{\times}10^{-4}{\sim}19.4{\times}10^{-4}sec^{-1}$ in the $O_3/UV/TiO_2$ process. Activation energy ($E_a$) of ozone oxidation reaction based on $k_{COD}$ and $k_{TOC}$ were increased in order of $O_3/UV/TiO_2$ < $O3/UV$ < $O_3/TiO_2$ < $O_3$ process. It was confirmed that the addition of $TiO_2$ and UV irradiation to the ozone oxidation reaction significantly reduced the $E_a$ value and the degradation of 4-NP.

Photocatalytic Decomposition of Gaseous Acetaldehyde by Metal Loaded $TiO_2$ with Ozonation

  • Cho, Ki-Chul;Yeo, Hyun-Gu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제22권E1호
    • /
    • pp.19-26
    • /
    • 2006
  • The decomposition of gaseous $CH_3CHO$ was investigated by metal loaded $TiO_2$ (pure $TiO_2,\;Pt/TiO_2,\;Pd/TiO_2,\;Mn/TiO_2\;and\;Ag/TiO_2$) with $UV/TiO_2$ process and $UV/TiO_2/O_3$ process at room temperature and atmospheric pressure. Metal loaded $TiO_2$ was prepared by photodeposition. Decomposition of $CH_3CHO$ was carried out in a flow-type photochemical reaction system using three 10W black light lamps ($300{\sim}400nm$) as a light source. The experimental results showed that the degradation rate of $CH_3CHO$ was increased with Pt and Ag on $TiO_2$ compared to pure $TiO_2$, but decreased with depositing Pd and Mn on pure $TiO_2$. The considerable increase in the degradation efficiency of the $CH_3CHO$ was found by a combination of photocatalysis and ozonation as compared to only by ozonation or photocatalysis. Loading of Pt on $TiO_2$ promoted conversion of gaseous ozone. The degradation rate of gaseous $CH_3CHO$ decreased with an increase of water vapor in the feed stream for the both $UV/TiO_2\;and\;UV/TiO_2/O_3$ processes. The pure $TiO_2$ was more affected by the water vapor than Pt loaded $TiO_2$.