• Title/Summary/Keyword: TiN PVD coating

Search Result 51, Processing Time 0.025 seconds

EFFECT OF MULTILAYER COATING ON THE CORROSION RESISTANCE OF SINTERED STAINLESS STEELS

  • Choe, Han-Cheol;Ko, Yeong-Mu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.136-137
    • /
    • 2003
  • In this study, in order to fabricate sintered dental implant, the effects of HA, Ti and TiN on corrosion and biocompatibility, cell toxicity, osseointegration of electroless Cu-plated and sintered stainless steel implant were investigated using various characteristics. The effects of Ti/TiN/HA coating on the interface activation and surface characteristics of sintered stainless steels(SSS) by electron-beam physical vapor deposition(EB-PVD) method have been studied. Stainless steel compacts containing 2, 4, and 10 wt%Cu were prepared by electroless Cu-plating method which results in the increased homogenization in alloying powder. The specimens were coated with HA, Ti and TiN with few $\mu\textrm{m}$ thickness respectively by EB-PVD method. The microstructures and phase analysis were conducted by using SEM. Biocompatibility were investigated in experimental dog. The corrosion behaviors were investigated using potentiosat in 0.9% NaCl solution and corrosion surface was observed using SEM and XPS.

  • PDF

The Evaluation of PVD Coated HSS Endmill (HSS엔드밀의 PVD코팅 및 성능평가)

  • Lee, Sang-Seog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.4
    • /
    • pp.103-109
    • /
    • 2012
  • To enhance the cutting performance of high speed steel(HSS) endmill, single and multilayer coating is applied on the substrated of the HSS endmill. Coating material reduces cutting force and enhances resistance against abrasive wear. This paper presents the physical vapour deposition(PVD) coating technology and evaluate the PVD coated HSS endmill. The performance of coated HSS endmills are fifteen times better than uncoated HSS endmill on proposed cutting conditions. The TiAlN monolayer coated endmills(futura nano coating) are better than those of multilayer coated endmills(futura coating) on machined surface and tool wear.

The Evaluation of PVD Coated HSS Endmill (HSS엔드밀의 PVD코팅 및 성능평가)

  • Lee, Sang-Seog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.119-125
    • /
    • 2013
  • To enhance the cutting performance of high speed steel(HSS) endmill, single and multilayer coating is applied on the substrated of the HSS endmill. Coating material reduces cutting force and enhances resistance against abrasive wear. This paper presents the physical vapour deposition(PVD) coating technology and evaluate the PVD coated HSS endmill. The performance of coated HSS endmills are fifteen times better than uncoated HSS endmill on proposed cutting conditions. The TiAlN monolayer coated endmills(futura nano coating) are better than those of multilayer coated endmills(futura coating) on machined surface and tool wear.

Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties (Ti-Al-Si-N 박막 제작을 위한 합금 타겟 제조 및 박막의 기계적 특성)

  • Lee, Han-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.665-670
    • /
    • 2016
  • Prevailing dissemination of machine tools and cutting technology have caused drastic developments of high speed dry machining with work materials of high hardness, and demands on the high-hardness-materials with high efficiency have become increasingly important in terms of productivity, cost reduction, as well as environment-friendly issue. Addition of Si to TiAlN has been known to form nano-composite coating with higher hardness of over 30 GPa and oxidation temperature over $1,000^{\circ}C$. However, it is not easy to add Si to TiAlN by using conventional PVD technologies. Therefore, Ti-Al-Si-N have been prepared by hybrid process of PVD with multiple target sources or PVD combined with PECVD of Si source gas. In this study, a single composite target of Ti-Al-Si was prepared by powder metallurgy of MA (mechanical alloying) and SPS (spark plasma sintering). Properties of he resulting alloying targets were examined. They revealed a microstructure with micro-sized grain of about $1{\sim}5{\mu}m$, and all the elements were distributed homogeneously in the alloying target. Hardness of the Ti-Al-Si-N target was about 1,127 Hv. Thin films of Ti-Al-Si-N were prepared by unbalanced magnetron sputtering method by using the home-made Ti-Al-Si alloying target. Composition of the resulting thin film of Ti-Al-Si-N was almost the same with that of the target. The thin film of Ti-Al-Si-N showed a hardness of 35 GPa and friction coefficient of 0.66.

A Study on the Friction and Wear Characteristics of C-N Coated Spur Gear (C-N코팅 스퍼기어의 마찰 . 마모 특성에 관한 연구)

  • 노룡;류성기
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.272-277
    • /
    • 2004
  • This study deals with the friction and wear characteristics of C-N coated spur gear. The PSII apparatus was built and a SCM415 test piece and test gear with steel substrate was treated with carbon nitrogen by this apparatus. The composition and structure of the surface layer were analyzed and compared with that of PVD coated TiN layer. It was found that both of friction coefficient of C-N coating and TiN coating decreased with increasing load, however, C-N coating showed relatively lower friction coefficient than that of TiN coating. We was investigated the effect of C-N coating on hardness, friction and wear. The TiN coated gear showed a more serious friction phenomena than that of C-N coated gear. It was considered that coating of TiN, which was conducted at a vacuum chamber at about 500$^{\circ}C$, results in a tempering of base material that causes microstructural change, which in turn resulted in decreasing of hardness. The C-N coated gear and pinion had higher wear resistance that of TiN coated gear and pinion. C-N coating significantly improved the friction and wear resistance of the gear.

Fabrication of TiAl Target by Mechanical Alloying and Applications in Physical Vapour Deposition Coating

  • Gabbitas, Brian;Cao, Peng;Raynova, Stiliana;Zhang, Deliang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.729-730
    • /
    • 2006
  • The research involves the development of a powder metallurgical route for producing good quality TiAl targets for making physical vapour deposition (PVD) coatings. Mixtures of elemental titanium and aluminium powders were mechanically milled using a novel discus milling technique under various conditions. Hot isotropic pressing (HIP) was then employed for consolidation of the mechanically alloyed powders. A cathodic arc vapour deposition process was applied to produce a TiAlN coating. Microstructural examination was conducted on the target material and PVD coatings, using X-ray diffractometry (XRD), X-ray photoelectron spectrometry (XPS) and scanning electron microscopy (SEM). It has been found that combining mechanical alloying and HIP enable us to produce fairly good quality of TiAl based target. The PVD coatings obtained from the TiAl target showed very high microhardness values.

  • PDF

A Study on the Friction and Wear Characteristics of C-N Coated Spur Gear (C-N 코팅 스퍼기어의 마찰${\cdot}$마모 특성에 관한 연구)

  • Lu Long;Lyu Sung-ki
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.41-46
    • /
    • 2004
  • This study deals with the friction and wear characteristics of C-N coated spur gear. The PSII apparatus was built and a SCM415 test piece and test gear with steel substrate was treated with carbon nitrogen by this apparatus. The composition and structure of the surface layer were analyzed and compared with that of PVD coated TiN layer. It was found that both of friction coefficients of C-N coating and TiN coaling decreased with increasing load, however, C-N coating showed relatively lower friction coefficient than that of TiN coating. We was investigated the effect of C-N coating on hardness, friction and wear. The TiN coated gear showed more serious friction phenomena than that of C-N coated gear. It was considered that coating of TiN, which was conducted at a vacuum chamber at about $500^{\circ}C$ results in a tempering of base material that causes microstructure change, which in turn resulted in decreasing of hardness. The C-N coated gear and pinion had higher wear resistance that of TiN coated gear and pinion. C-N coating significantly improved the friction and wear resistance of the gear.

  • PDF

Comparative Study on the Ceramic and the TiN Coated Ceramic Tools for the Early Fracture (세라믹공구와 TiN피복 세라믹 공구의 초기파손에 관한 비교연구)

  • 이명재
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.123-129
    • /
    • 1998
  • Ceramic and CBN tools are available for the difficult-to -cut-materials such as hardened carbon tool steel. stainless steel and etc. Ceramic tools are suitable for continuous turning cut, not for intermittent milling cut. Ceramic tools are likely to be chipped and abruptly broken before the appearance of normal wear in turning. In this study, TiN coated ceramic tools were found to restrain the chipping, breaking and early fracture and to increase the critical cutting velocity owing to TiN coating in PVD method.

  • PDF

A Study on the Coated Characteristics of Ceramic Tools (세라믹공구 재료의 피복특성에 관한 연구)

  • Lee, Myeong-Je;Im, Hong-Seop;Yu, Bong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.900-906
    • /
    • 2000
  • Ceramic, PCD and CBN tools are available for the difficult-to-cut-materials such as hardened carbon tool steel, stainless steel, Inconel 718 and etc. Ceramic tools are likely to be chipped and abruptly broken before the appearance of normal wear in turning. Ceramic tools are suitable for continuous in turning, not for intermittent in milling. In this study, TiN/TiCN multi-layer coated ceramic tools were found to restrain the chipping, breaking and early fracture and to increase the critical cutting speed owing to TiN/TiCN multi-layer coating in Arc Ion Plating of PVD method.

Stability of TiN and WC Coated Dental Abutment Screw (TiN 및 WC코팅된 치과용 어버트먼트 나사의 안정성)

  • Son, M.K.;Lee, C.H.;Chung, C.H.;Jeong, Y.H.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.292-300
    • /
    • 2008
  • Dental implant system is composed of abutment, abutment screw and implant fixture connected with screw. The problems of loosening/tightening and stability of abutment screw depend on surface characteristics, like a surface roughness, coating materials and friction resistance and so on. For this reason, surface treatment of abutment screw has been remained research problem in prosthodontics. The purpose of this study was to investigate the stability of TiN and WC coated dental abutment screw, abutment screw was used, respectively, for experiment. For improving the surface characteristics, TiN and WC film coating was carried out on the abutment screw using EB-PVD and sputtering, respectively. In order to observe the coating surface of abutment screw, surfaces of specimens were characterized, using field emission scanning electron microscope(FE-SEM) and energy dispersive x-ray spectroscopy(EDS). The stability of TiN and WC coated abutment screw was evaluated by potentiodynamic, and cyclic potentiodynamic polarization method in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion potential of TiN coated specimen was higher than those of WC coated and non-coated abutment screw. Whereas, corrosion current density of TiN coated screws was lower than those of WC coated and non-coated abutment screw. The stability of screw decreased as following order; TiN coating, WC coating and non-coated screw. The pitting potentials of TiN and WC coated specimens were higher than that of non-coated abutment screw, but repassivation potential of WC coated specimen was lower than those of TiN coated and non-coated abutment screws due to breakdown of coated film. The degree of local ion dissolution on the surface increased in the order of TiN coated, non-coated and WC coated screws.