• Title/Summary/Keyword: TiCu

Search Result 981, Processing Time 0.028 seconds

Fabrication of One-Dimensional Graphene Metal Edge Contact without Graphene Exfoliation

  • Choe, Jeongun;Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.371.2-371.2
    • /
    • 2016
  • Graphene electronics is one of the promising technologies for the next generation electronic devices due to the outstanding properties such as conductivity, high carrier mobility, mechanical, and optical properties along with extended applications using 2 dimensional heterostructures. However, large contact resistance between metal and graphene is one of the major obstacles for commercial application of graphene electronics. In order to achieve low contact resistance, numerous researches have been conducted such as gentle plasma treatment, ultraviolet ozone (UVO) treatment, annealing treatment, and one-dimensional graphene edge contact. In this report, we suggest a fabrication method of one-dimensional graphene metal edge contact without using graphene exfoliation. Graphene is grown on Cu foil by low pressure chemical vapor deposition. Then, the graphene is transferred on $SiO_2/Si$ wafer. The patterning of graphene channel and metal electrode is done by photolithography. $O_2$ plasma is applied to etch out the exposed graphene and then Ti/Au is deposited. As a result, the one-dimensional edge contact geometry is built between metal and graphene. The contact resistance of the fabricated one-dimensional metal-graphene edge contact is compared with the contact resistance of vertically stacked conventional metal-graphene contact.

  • PDF

Piezoelectric and Dielectric Characteristics of Low Loss Low Temperature Sintering PMN-PNN-PZT Ceramics with the amount of PNN Substitution (PNN 치환량에 따른 저손실 저온소결 PMN-PNN-PZT 세라믹스의 압전 및 유전특성)

  • Yoo, Ju-Hyun;Kim, Kook-Jin;Jeong, Yeong-Ho;Lee, Su-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.766-770
    • /
    • 2007
  • In this study, in order to develop low temperature sintering ceramics for multilayer piezoelectric actuator, $0.07Pb(Mn_{1/3}Nb_{2/3})O_3-xPb(Ni_{1/3}Nb_{2/3})O_3-(0.93-x)Pb(Zr,Ti)O_3$ ceramics system were fabricated using $Li_2CO_3-Bi_2O_3-CuO$ sintering aids and the specimens were sintered at $930^{\circ}C$. Thereafter, their piezoelectric and dielectric characteristics were investigated according to the amount of PNN substitution. At 9 mol% PNN substitution, density, electromechanical coupling factor ($k_p$), dielectric constant, mechanical quality factor ($Q_m$) and piezoelectric constant ($d_{33}$) showed the optimum value of $7.86g/cm^3$, 0.60, 1640, 1323 and 387 pC/N, respectively. It is considered that these values are suitable for piezoelectric divece application such ad multilayer piezoelectric actuator and ultrasonic vibrator with pure Ag internal electrode.

Characterization of Chemical Composition and Size Distribution of Atmospheric Aerosols by Low-Pressure Impactor (저압 임팩터를 이용한 대기 에어로졸 입자의 입경분포 측정과 화학조성 자료의 해석)

  • 박정호;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.475-486
    • /
    • 1997
  • The characteristics of atmospheric aerosols were investigated as a function of particle size and water solubility. The atmospheric aerosols were sampled with classifying into 12 size ranges by the use of Andersen low-pressure impactor. Collected aerosol particles were extracted by ultrapure water and filtered to be separated into water-soluble and insoluble components. The concentrations 12 elements in both components were determined by PIXE analysis. And the concentrations of 8 ions in the soluble component were analyzed by ion chromatography. In general, the mass size distribution of particulate matter was represented as a bimodal distribution. The mass size distributions of S$(SO_4^{2-}), K(K^+), Zn and NH_4^+$ skewed to the smaller size range and those of Si, Ca$(Ca^{2+}), Fe, Na^+ and Mg^{2+}$ skewed to the larger size range. They had roughly one peak in the fine and coarse particle region,respectively. On the other hand, the mass size distribution of Ti, Mn, Ni, Cu, $Cl^- and NO_3^-$ were represented as the bimodal distribution. Fe and Si in the aerosol particles extracted into pure water are existing in high insoluble state. Conversely, almost the whole of S is dissolved in water.

  • PDF

A Basic Study of Plasma Reactor of Dielectric Barrier Discharge for the Water Treatment (수처리용 유전체장벽 플라즈마 반응기에 대한 기초 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.623-630
    • /
    • 2011
  • This study investigated the degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) by using dielectric barrier discharge (DBD) plasma. The DBD plasma reactor of this study consisted of a quartz dielectric tube, titanium discharge (inner) and ground (outer) electrode. The effect of shape (rod, spring and pipe) of ground electrode, diameter (9~30 mm) of ground electrode of spring shape and inside diameter (4~13 mm) of quartz tube, electrode diameter (1~4 mm), electrode materials (SUS, Ti, iron, Cu and W), height difference of discharge and ground electrode (1~15.5 cm) and gas flow rate (1~7 L/min) were evaluated. The experimental results showed that shape of ground electrode and materials of ground and discharge electrode were not influenced the RNO degradation. The thinner the diameter of discharge and ground electrode, the higher RNO degradation rate observed. The effect of height gap of discharge between ground electrode on RNO degradation was not high within the experimented value. Among the experimented parameters, inside diameter of quartz tube and gas flow rate were most important parameters which are influenced the decomposition of RNO. Optimum inside diameter of quartz tube and gas flow rate were 7 mm and 4 L/min, respectively.

Fabrication and Properties of Piezoelectric Microcantilever for Gas Sensor Application (가스 센서 응용을 위한 압전 마이크로 칸티레버의 제작 및 특성)

  • 신상훈;송상근;백준규;박효덕;이재찬
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.75-75
    • /
    • 2003
  • 본 연구에서는 대기 중 극 미량으로 존재하는 환경 유해 가스 성분을 검출할 수 있는 미세 소자로의 응용을 위해 마이크로 칸티레버를 제작하고 가스 센서로의 활용 가능성을 검토하였다. 마이크로 칸티레버는 크게 구동층 캐패시터로서 대표적인 압전 재료인 Pb(Zr,Ti)O$_3$ (PZT)를 사용하고 SiNx 박막을 지지층으로 하는 형태로 제작되었다. 제작된 마이크로 칸티레버는 치수 및 형상에 따라 17~29 KHz 의 기본 공진 주파수 값을 나타내었다. Electron beam evaporator를 이용한 copper (Cu) 박막의 단계적인 증착을 통해 칸티 레버 표면에 질량을 증가시키고 그에 따른 마이크로 칸티레버의 공진주파수 변화를 관찰한 결과 질량 증가에 대해 34 Hz/ng의 선형적인 주파수 감소를 나타내었으며, 이로부터 694.4 $\textrm{cm}^2$/g 의 gravimetric sensitivity factor를 얼을 수 있었다. 마이크로칸티레버의 가스 감지능력 시험을 위해 가스 흡착층으로 일차 알콜류의 vapor를 흡착 하는 것으로 보고된 poly methyl metacrytate (PMMA)를 마이크로 칸티레버 표면에 코팅하였다. 마이크로칸티 레버의 기본 공진 주파수 및 PMMA 흡착층 형성과 가스의 흡착에 따른 주파수 변화는 마이크로 칸티 레버로부터 의 전기적 신호를 이용하는 복소 임피던스 분석에 의해 측정되었다. PMMA가 코팅된 마이크로 칸티레버는 ethanol 및 methanol vapor 의 농도가 증가함에 따라 선형적인 공진주파수 감소를 나타내었으며, methanol vapor 의 경우 0.06 Hz/ppm 의 가스 검출 감도를 얻을 수 있었다.

  • PDF

Low-cost Contact formation of High-Efficiency Crystalline Silicon Solar Cells by Plating

  • Kim D. S.;Lee E. J.;Kim J.;Lee S. H.
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.37-43
    • /
    • 2005
  • High-efficiency silicon solar cells have potential applications on mobile electronics and electrical vehicles. The fabrication processes of the high efficiency cells necessitate com placated fabrication precesses and expensive materials. Ti/Pd/Ag metal contact has been used only for limited area In spite of good stability and low contact resistance because of Its expensive material cost and precesses. Screen printed contact formed by Ag paste causes a low fill factor and a high shading loss of commercial solar cells because of high contact resistance and a low aspect ratio. Low cost Ni/Cu metal contact has been formed by using a low cost electroless and electroplating. Nickel silicide formation at the interface enhances stability and reduces the contact resistance resulting In an energy conversion efficiency of $20.2\%\;on\;0.50{\Omega}cm$ FZ wafer. Tapered contact structure has been applied to large area solar cells with $6.7\times6.7cm^2$ in order to reduce power losses by the front contact The tapered front metal contact Is easily formed by the electroplating technique producing $45cm^2$ solar cells with an efficiency of $21.4\%$ on $21.4\%\;on\;2{\Omega}cm$ FZ wafer.

  • PDF

Nonvolatile Memory and Photovoltaic Devices Using Nanoparticles

  • Kim, Eun Kyu;Lee, Dong Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.79-79
    • /
    • 2013
  • Quantum-structures with nanoparticles have been attractive for various electronic and photonic devices [1,2]. In recent, nonvolatile memories such as nano-floating gate memory (NFGM) and resistance random access memory (ReRAM) have been studied using silicides, metals, and metal oxides nanoparticles [3,4]. In this study, we fabricated nonvolatile memories with silicides (WSi2, Ti2Si, V2Si) and metal-oxide (Cu2O, Fe2O3, ZnO, SnO2, In2O3 and etc.) nanoparticles embedded in polyimide matrix, and photovoltaic device also with SiC nanoparticles. The capacitance-voltageand current-voltage data showed a threshold voltage shift as a function of write/erase voltage, which implies the carrier charging and discharging into the metal-oxide nanoparticles. We have investigated also the electrical properties of ReRAM consisted with the nanoparticles embedded in ZnO, SiO2, polyimide layer on the monolayered graphene. We will discuss what the current bistability of the nanoparticle ReRAM with monolayered graphene, which occurred as a result of fully functional operation of the nonvolatile memory device. A photovoltaic device structure with nanoparticles was fabricated and its optical properties were also studied by photoluminescence and UV-Vis absorption measurements. We will discuss a feasibility of nanoparticles to application of nonvolatile memories and photovoltaic devices.

  • PDF

A Study on the Pharmacetical Characteristics and Analysis of Green-tea Extract (녹차 추출물의 약리적 특성 및 분석)

  • Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.115-124
    • /
    • 2006
  • From the result of pharmacetical characteristics and analysis of Green-tea extract, it could obtain some conclusions as follows. The extract experiment of Green-tea appeared about 10%-extraction ratio as semi-solid state, and after dried in freezing from Green-tea extract of semi-solid state, it obtained about 65% Green-tea extract as solid state. In the results on antimicrobial experiment of Green-tea extract, number of S-typhimurium and fungus in microbe decreased more and more according to the time passage. This phenomenon could show that Green-tea extract keeps antimicrobial effect. In the results on antioxidation experiment of Green-tea extract, DPPH scavenging activity of free radical showed that Green-tea extract appears more remarkable reduction ability than reference samples. This phenomenon means that antioxidation of Green-tea extract appears higher than Vitamin-C and BHA sample. In the results on intrument analysis, the fatty and aromatic components of aniline, acetaldehyde, acetic acid, trichloroethylene, caffeine etcs from Green-tea extract was detected with GC/MS analysis and inorganic components of Ca, Mg, Cu, Mo, Sb, Ti etcs from Green-tea extract was detected with ICP/OES analysis.

A Study on the Pharmaceutical & Chemical Characteristics and Analysis of Natural Curcumin Extract (천연 강황 추출물의 약리, 화학적 특성 및 분석)

  • Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.393-401
    • /
    • 2011
  • Natural Curcumin belongs to Zingiber Officinale Roscoe was known to possess natural odor, natural taste, natural color, and other pharmaceutical & chemical characteristics. Natural Curcumin extract was made to use ethanol as a solvent was to show a yellow color having state of solid powder and an active component. Natural Curcumin extract tested pharmaceutical & chemical experiment to dilute in curcumin 1%-water solution. Curcumin extract tested antimicrobial experiment using microbe, and tested dye experiment using fiber. Some conclusions in the result of characteristics experiment was obtained as follow. The result of antimicrobial experiment showed that the growth of staphylococcus aureus (ATCC-001) and aspergillus niger (ATCC-002) as microbes decreased according to passage of time. This phenomenon could know that Curcumin compoment showed influence to antimicrobial effect. Also, the result of dye experiment showed that cotton and sick with fiber dyeing dyed in direction of dark yellow color. This phenomenon could know that Curcumin extract showed influence to dyeing effect in observation of optical electron microscope(OEM.) The result of instrument analysis ascertained inorganic components of K(53.300ppm), Na(1.150ppm), Ca(0.711ppm), Ti(0.351ppm), Li(0.256ppm), Cu(0.233ppm) etcs from Curcumin component with ICP/OES, and ascertained organic components of propanoic acid(1.859), benzene(10.814), phenol(14.194) etcs from Curcumin component with GC/MSD.

Fabrication of High-T$_c$ Superconducting Josephson Junctions by Ar lon Milling and E-Beam Lithography (Ar 이온빔 식각과 전자선리소그래피 방벙으로 제작한 고온초전도 조셉슨 접합)

  • Lee, Moon-Chul;Kim, In-Seon;Lee, Jeong-O;Yoo, Kyung-Hwa;Park, Yong-Ki;Park, Jong-Chul
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.91-94
    • /
    • 1999
  • A new type of high-T$_c$ superconducting Josephson junctions has been prepared by Ar ion beam etching and electron beam lithography. YBa$_2Cu_3O_{7-x}$ (YBCO) films deposited on (001) SrTiO$_3$ single crystal substrate by pulsed laser deposition were patterned by Ar ion milling with photolithography. The narrow slit with a electroresist mask, about 1000 ${\AA}$ wide, was constructed over a 3 ${\sim}$ 5 ${\mu}$m bridge of a 1200-${\AA}$-thick YBCO film by electron beam lithography. The slit was then etched by the Ar ion beam to form a damaged 600-${\AA}$-thick YBCO. Thus prepared structure forms an S-N-S (YBCO - damaged YBCO - YBCO) type Josephson junctions. Those junctions exhibit RSI-like I-V characteristics at 77 K. The properties of the Josephson junctions such as I$_c$ R$_N$, and J$_c$ were characterized.

  • PDF