• Title/Summary/Keyword: TiC particle

Search Result 311, Processing Time 0.023 seconds

Synthesis of $PbLaTiO_{3}$: Mn powders by hydrothermal method

  • Park, Sun-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.63-67
    • /
    • 2003
  • Synthesis of $PbLaTiO_{3}$ : Mn powders containing La and Mn was carried out using $PbO,\;TiO_{2},\;La_{2}O_{3}\;and\;MnO_{2}$ as starting materials by hydrothermal method. In the synthesis of single phase $PbLaTiO_{3}$ : Mn powder containing La and Mn, the optimal x value corresponding to La substitution was 0.01 which corresponds to $0.99(Pb_{1-x}La_{2x/3}TiO_{3})+0.01MnO_{2}$. The optimal conditions for the preparation of the powder synthesis were 8 M-KOH solvent of hydrothermal solvent, $270^{\circ}C$ of reaction temperature and 24 hrs of run time. It was found that the synthesized powders had spherical morphology with average particle size of 70 nm and specific surface area of $5.5\;m^{2}/g$.

The study of the compressive strength of cement pastes containing nano-TiO2 (나노 TiO2를 혼입한 시멘트 페이스트의 압축강도 연구)

  • Zhang, Guang-Zhu;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.214-215
    • /
    • 2018
  • This paper has been researched that the earlier compressive strength of the cement pastes containing nano-TiO2 particle curing 1day, 3days and 7days. For the compressive strength measurements, all samples(dimensions 50×50×50mm) were prepared in accordance with ASTM C109. The compressive strength of the specimens with nano-TiO2 at the early age(1day, 3days and 7days) stage was lower than that of the reference group. Therefore, nano-TiO2 has little positive effect on the improvement of the compressive strength of cement pastes during early ages.

  • PDF

Fabrication of $TiO_2-CeO_2$ Composite Membranes with Thermal Stability

  • Bae, Dong-Sik;Han, Kyong-Sop;Park, Sang-Hael
    • The Korean Journal of Ceramics
    • /
    • v.1 no.4
    • /
    • pp.219-223
    • /
    • 1995
  • Ceramic membranes of the supported $TiO_2-CeO_2$ were prepared by dip-coating method on an $\alpha-Al_2O_3$ porous substrate. The mean pore diameter of an alumina support was 0.125 um. The mean particle diameter of $TiO_2-CeO_2$ top layer varied with firing temperature and ranged from 20 to 85 nm. The thermal stability of the composite membranes was studied from their surface microstructure after calcination at $600-900^{\circ}C$. The supported $TiO_2-CeO_2$ composite membranes exhibited much higher heat resistance than the $TiO_2$ membrane.

  • PDF

Electrical Properties of Donor-doped BaTiO3 Ceramics by Attrition Milling and Calcination Temperature (분쇄 방법 및 하소온도에 따른 Doner-doped BaTiO3의 전기적 특성)

  • Lee, Jeong-Cheol;Myong, Seong-Jae;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Shin, Dong-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.217-221
    • /
    • 2008
  • In this study, We have been investigated the effect of calcination temperature and high-energy ball-milling of powder influences the $BaTiO_3$-based PTCR(Positive Temperature coefficient Resistance) characteristics and microstructure. The mixed powder was obtained from $BaCO_3$, $TiO_2$, $CeO_2$ ball-milled in attrition mill. The mixed powder was calcine from 1000 $^{\circ}C$ to 1200 $^{\circ}C$ in air and then it was sintered in reduction- re-oxidation atmosphere. As a result, The room-temperature electrical resistivity decreased and increased with increasing calcination temperature. specially, Attrition milled powder could have low room-temperature resistivity and high PTC jump order at 1100 $^{\circ}C$. attrition milling had lower room-temperature resistivity than ball milling. Particle size decreased by Attrition milling of powder influences in calcination temperature and room-temperature resistivity.

Dry Sliding Wear Behavior of Carbide-Particle-Reinforced 7075 Al Alloy Matrix Composites (탄화물(SiC, TiC, $B_4C$ ) 입자 강화 7075 Al 합금 기지 복합재료의 건식 미끄럼 마멸 거동)

  • 강석하;박형철;강신철;김용석
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.27-27
    • /
    • 2003
  • 무가압침투법으로 제조된 부피분율 10~24% SiC, TiC, B$_4$C 탄화물 입자강화 7075 Al 합금 기지 복합재료의 건식 미끄럼 마멸거동을 강화입자의 종류, 크기 및 부피 분율을 변수로 연구하였다. 미끄럼 마멸 시험은 pin-on-disk 형태의 마멸 시험기를 사용하여, AISI 52100 베어링강을 상대재로 상온 대기 중에서 실시되었다. 마멸특성의 분석과 마멸기구의 규명을 위하여 마멸면과 마멸단면을 SEM, EDS를 이용하여 분석하였다. 제조된 복합재료의 압축 시험을 통하여 측정된 항복강도와 가공경화지수는 서로 반비례하였고, 각 시편간의 경도 차는 크지 않았다. 마멸 시험결과, 크기 및 부피 분율이 7$\mu\textrm{m}$ !0%인 SiC 입자로 강화된 복합재료를 제외하고, 전체 복합재료 시편은 7075 Al 기지 합금에 비해 낮은 마멸 속도를 보였다. 10N 이하의 저하 중에서는 강화상의 종류와 상관없이 복합재료는 낮은 마멸 속도를 보였고, 25N 이상의 고하중에서는 TiC 입자강화 복합재료가 가장 낮은 마멸 속도를, SiC 입자강화 복합재료가 가장 높은 마멸 속도를 나타내었다. 강화 입자의 크기 및 부피 분율이 동일한 경우 SiC 입자로 강화된 복합재료가 가장 낮은 내마멸성을 나타내었다. 강화상의 크기 및 부피 분율이 증가함에 따라 미소 마멸에서 격렬 마멸로의 천이 하중이 증가하였다.

  • PDF

Hydrothermal Preparation and Sintering of Fine PSZT Powder (미세 PSZT분말의 수열합성 및 소결)

  • Oh, Jung Kang;Seo, Kyung Won
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.654-660
    • /
    • 1998
  • In preparing PSZT powder by hydrothermal synthesis, effects of reaction temperature, concentration of raw materials and mineralizer on crystallinity, particle size distribution, and dielectric constant were investigated. By varying the concentration of mineralizer and the ratio of Pb to Sr or Zr to Ti, crystalline PSZT powder, having the mean particle size of $0.3{\sim}15{\mu}m$, was prepared by hydrothermal synthesis in the temperature range of $120{\sim}200^{\circ}C$ for a 2h reaction. PSZT ceramics, having dielectric constant of 1000~3000, were prepared at $1150^{\circ}C$ for a 2h sintering reaction of the PSZT powders. Experimental results showed that the weight mean particle size of $0.5{\mu}m$ was obtained when the concentration of KOH in the solution was 10 wt % and the ratio of Pb to Sr was 0.95/0.05, that of Zr to Ti was 0.52/0.48. It also showed that the ceramics of dielectric constant of 2900 were prepared through sintering of this PSZT powder. Size of PSZT particles became smaller with its narrow distribution as the concentration of KOH increased up to 10 wt %. However, it came to be larger at this concentration and above. By adding small amount of Sr that would not affect that crystallinity of particles we can improve dielectric property of sintered materials. Addition of Zr may shift the major crystal phase of synthetic PSZT powder from tetragonal to rhombohedral phase.

  • PDF

Preparation of TiO2 Nanoparticles from Titanium Tetraisopropoxide Using an Aerosol Microreactor (에어로졸 마이크로반응기에 의한 Titanium Tetraisopropoxide로부터 TiO2 나노입자 제조)

  • Choi, Jae Gil;Park, Kyun Young
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.609-615
    • /
    • 2005
  • $TiO_2$ particles, 30-300 nm in diameter, were prepared by thermal decomposition of titanium tetraisopropoxide (TTIP) using an aerosol microreactor, by which about $1{\mu}l$ of the liquid precursor is injected into an evaporator, 1 cc in volume, and vaporized precursor is then transported by nitrogen as a bolus to a tubular reactor 4 mm in diameter and 35 cm in length. Investigated were the effects of the reactor temperature and the concentration of TTIP vapor on the morphology, particle size distribution and crystalline structure of produced $TiO_2$ particles. With TTIP vapor concentration kept constant at 1 mol%, the reactor temperature was varied from 300 to 500 and $700^{\circ}C$. The primary particle size decreased with increasing the temperature, and the size distributions were mono-modal at 300 and $500^{\circ}C$, but bi-modal at $700^{\circ}C$. The TTIP vapor concentration was increased from 1 to 3.5 and 7 mol%, holding the reactor temperature at $700^{\circ}C$. The bi-modal distribution seen at the concentration of 1 mol% disappeared and the number of particles composing an agglomerate increased at the higher concentrations. These effects of the reactor temperature and the precursor concentration were discussed in comparison with experimental results reported earlier.

A study on the Particulate Properties of Ti-Ni alloy Nanopowders Prepared by Levitational Gas Condensation Method (부양가스증발응축법으로 제조된 Ti-Ni 합금 나노분말의 특성 연구)

  • Han, B.S.;Uhm, Y.R.;Lee, M.K.;Kim, G.M.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.396-400
    • /
    • 2006
  • The Ti-Ni alloy nanopowders were synthesized by a levitational gas condensation (LGC) by using a micron powder feeding system and their particulate properties were investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) method. The starting Ti and Ni micron powders $150{\mu}m$ were incorporated into the micron powder feeding system. An ingot type of the Ti-Ni ahoy was used as a seed material for the levitation and evaporation reactions. The collected powders were finally passivated by oxidation. The x-ray diffraction experiments have shown that the synthesized powders were completely alloyed with Ti and Ni and comprised of two different cubic and monoclinic crystalline phases. The TEM results showed that the produced powders were very fine and uniform with a spherical particle size of 18 to 32nm. The typical thickness of a passivated oxide layer on the particle surface was about 2 to 3 nm. The specific surface area of the Ti-Ni alloy nanopowders was $60m^2/g$ based on BET method.

Photo-catalytic Characteristics of Sol-Gel Synthesized TiO2 Thin Film (졸-겔법을 이용한 TiO2 박막의 광촉매 특성)

  • Choi, Kyu-Man;Kim, Yeo-Hwan;Lim, Hae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.846-849
    • /
    • 2013
  • Thin film of $TiO_2$ was obtained by the sol-gel dip method on the brosilicate glass substrate. It was found that the film was about $1.5{\mu}m$ thick as obtained by 4 successive coatings and annealed at varied temperatures ranged from $300^{\circ}C$ to $1100^{\circ}C$ for 2 hrs. The substrate used was having the surface area of $100mm^2$. Increasing the annealing temperature caused to change in mineralogical phase of titanium oxide i.e., amorphous, crystalline antase to rutile phases. The particle size of the titanium oxide film were ranged from $0.1{\sim}0.54{\mu}m$ estimated by the SEM analysis. The material showed an absorbance maximum at the wavelength 390nm obtained by UV-visible spectrophotometer. These results therefore, indicated that the $TiO_2$ film obtained relatively at low annealing temperature consisted predominantly with anatase phase; possessed higher photocatalytic behavior i.e., 2.4 times higher than that of only UV lamp irradiation.

Magnetic Characteristics of BaFe12-2xCoxTixO19 Particles Prepared by Sol-gel Synthesis (졸-겔 합성에 의한 BaFe12-2xCoxTixO19 미립자의 자기적 특성)

  • 최현승;정지형;박효열;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.62-68
    • /
    • 2003
  • Ba-ferrite particles added with Co and Ti, which were known well the additives for the control in coercivity, were synthesized by sol-gel method. In the range 90 to 120 minute reaction time, a stable sol solution which showed no change with temperature, pH, viscosity and aging time. After dried and heat treatment of sol solution, Ba-ferrite phase formed at $700^{\circ}C$ with Differential Thermal Analysis(DTA) and X-Ray Diffractometer(XRD) measurement. The crystallinity became to be better with increasing the temperature. It were showed by Scanning Electron Microscopy(SEM) that Ba-ferrite increased to particle sizes as increasing heating temperature and obtained of narrow particles size distribution. Also, magnetic characteristics of Ba-ferrite powders Co and Ti added were observed by a Vibrating Sample Magnetometer(VSM). Saturation magnetization$(M_s)$ was not much changed, however. the coercivity$(H_c)$dramatically dropped with addition of Co and Ti.