• Title/Summary/Keyword: TiAl Alloys

Search Result 335, Processing Time 0.026 seconds

A Study on the Gravity Segregation in Monotectic Al Alloys.(II);The Effect of Master Alloy Addition on the Distribution of Pb, Bi Particles (Al계 편정합금의 중력 편석에 관한 연구(II);Pb, Bi 입자의 분산에 미치는 모하금 첨가의 영향)

  • Hwang, Ho-Eul;Lee, Jai-Ha;Kim, Hee-Myung;Choe, Jeong-Cheol;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.10 no.5
    • /
    • pp.392-398
    • /
    • 1990
  • To improve free-cutting property, fine Pb, Bi particles is necessary to be distributed evenly in Al-Cu alloy. The control of added element size and distribution are very difficult because of the physical properties of Pb, Bi. The effect of master alloy compositions on microstructure and particle distribution was investigated. The ribbon shape of Pb-50wt% Bi master alloy showed the best results. And Ti addition improved even distribution of Pb, Bi particles. Particles grown from $L_2$ phase were considered to be the Pb, Bi compound.

  • PDF

Effects of Melt Treatments on Microstructures and Mechanical Properties of A357 Alloy (A357합금에서 용탕처리가 미세조직 및 기계적 특성에 미치는 영향)

  • Lee, Jung-Moo;Lee, Sung-Hak;Yoon, Ji-Hyun;Kim, Kyung-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.2
    • /
    • pp.69-76
    • /
    • 2003
  • The present work was undertaken to investigate the mutual effect of the individual melt treatment commonly applied in aluminum foundries such as grain refining, modification, degassing and filtration on the microstructures and the mechanical properties. A357 alloys were fabricated through various melt treatments such as degassing by gas bubbling filtration, modification via the addition of Al-Sr master alloy, grain refining through the addition of Al-Ti-B master alloy and filtration before pouring of the melt. Each melt treatment was performed at its optimum condition reported in the literatures. The effects of each melt treatment and their interactions on the microstructures and mechanical properties of A357 alloy were examined.

A Study on the Thermo-Mechanical Coupling Analysis to Working Condition of LAM (LAM 가공조건에 따른 열-구조 연성해석)

  • Park, Jeong-Ho;Park, Sung-Ho;Kim, Gwi-Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1127-1133
    • /
    • 2022
  • Recently, the use of aircraft structures using Ti alloy (Ti-6Al-4V), a lightweight high-strength alloy material, is rapidly increasing due to the weight reduction of aircraft. However, high-strength materials such as Ti alloys require high energy for cutting and are classified as difficult-to-cut materials. Also, research on Laser Assisted Machining (hereinafter referred to as LAM), a cutting processing technology that utilizes improved machinability, is being actively researched. Therefore, in this paper, in order to confirm the proper temperature distribution using a laser, the finite element method is used to determine the temperature distribution according to the calorific value condition to derive the appropriate condition, and the thermal load generated at this time is used as a structural analysis. It is intended to be used as basic data for LAM processing conditions by measuring the amount of residual stress and thermal deformation caused by heat.

Effects of Pd Addition on Electrode properties of Metal Hydride (Pd 첨가가 금속수소화물 전극 특성에 미치는 영향)

  • Choi, Jeon;Lee, Kyung-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1999
  • Recently the Ni/MH secondary battery has been studied extensively to achieve higher energy density, longer cycle life and faster charging-discharging rate etc. In this work, the electrode properties of $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$ alloy and $Ti_{0.6}Zr_{0.4}V_{0.6}Ni_{1.4}$ alloy with addition of Pd were investigated. These alloys did not show any change in XRD pattern by Pd addition. As Pd was added as alloy element, the activation behavior was not affected significantly in both $AB_2$ type and $AB_5$ type electrodes and, On charging and discharging in high current density, Discharge capacity with increasing of Pd content was more decreased. But cycle life was showed increasing. Especially the electrode of $Ti_{0.6}Zr_{0.4}V_{0.6}Ni_{1.4}+0.5wt%$ Pd alloy was not almost decreased discharge capacity for 400cycles.

  • PDF

A Study on the Deformation Induced Microstructure $L1_2$-ordered $Ni_3Al$ Containing Fine Precipitates (미세석출상을 포함하는 $L1_2$형 규칙 $Ni_3Al$의 변형조직에 관한 연구)

  • Han, Chang-Suk;Lee, Joon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.5
    • /
    • pp.251-258
    • /
    • 2008
  • A transmission electron microscope investigation has been performed on the morphology of dislocations in deformed ${\gamma}^{\prime}-Ni_3(Al,Ti)$ alloys containing fine dispersion of disordered ${\gamma}$ particles. Superlattice dislocations dissociate into fourfold Shockley partial dislocations in a uniform supersaturated solid solution of the ${\gamma}^{\prime}$ phase. Dislocations are attracted into the disordered ${\gamma}$ phase and dissociate further in the particles. At any stage of aging, dislocations cut through the particles and the Orowan bypassing process does not occur even in the over-aged stage of this alloy system. The work necessary to pull the dislocation away from the disordered particles into the ordered matrix should mainly contribute to increase the strength of the ${\gamma}^{\prime}$ phase containing fine dispersion of the disordered ${\gamma}$ phase.

Effects of Nonprecious Metallic Oxide on the Chemical Bonding Between Dental Alloy and Porcelain (비귀금속 산화물이 치과용 합금과 도재의 화학적 결합에 미치는 영향)

  • Kim, Kwang-Nam;Cho, Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.317-325
    • /
    • 1987
  • A study on the shear bonding strength between dental alloy and porcelain according to various kidns of sputtered metallic thin films was established by Ingtron universal testing machine, and the change of the elemental weight % at the surface of dental alloy was studied by E.D.S. The kind of metallic thin films were Al, Ni, In, Cr. Ti and Sn with $0.3{\mu}m$ thickness. The dental alloys were Verabond made by Aalba Dent. Co. and Degudent H manufactured by Degussa Co. The control groups were Verabond and Degudent H. The obtained results were as follows; 1. The shear bonding strength of Al plated sample was the strongest of all. 2. The shear bonding strength of Ni plated sample was stronger than that of Degudent H, Sn plated samples. 3. The shear bonding strength of Verabond was weaker than that of Al, Ni, In, Cr, plated samples. 4. After degassing, it is more weight % of Ni at the alloy surface of the Ni sputtered specimen than the Sn sputtered sample.

  • PDF

MECHANICAL PROPERTIES OF TITANIUM CONNECTORS TREATED BY VARIOUS WELDING TECHNIQUES (용접방법에 의한 타이타늄 연결부의 기계적 성질에 관한 연구)

  • Lee, Soo-Young;Chang, Ik-Tae;Heo, Seong-Joo;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.545-566
    • /
    • 1999
  • The use of pure titanium and titanium alloys have been increased recently in fixed, removable prosthodontics and implant fields as a framework. But when they were used for superstructures of implant or metal framework of removable prosthesis, welding is necessary to reconnect the fracture site to control the casting distortions. To overcome the difficulties in soldering the titanium due to high oxidation property, much effort have been devoted. In this study, some of mechanical properties were compared between pure titanium and Ti-6Al-4V alloy by using after welding, electron beam welding technique and tungsten arc welding. Mechanical properties such as tensile strength, yield strength, elongation and microhardness were measured. And, in order to compare the effect of welding site and surrounding metal tissue according to the welding condition, SEM photographs were taken and element distribution was observed by Wave Dispersion Spectroscopy. Through analyses of the data, following results were obtained; 1. In items such as tensile strength, yield strength and elongation according to the welding techniques of pure titanium, only tungsten arc welded group showed significant lower value than other groups(P<0.05). 2. In items such as tensile strength and yield strength according to the welding techniques of Ti-6Al-4V alloy, control group and tungsten arc welded group showed significant difference among all the groups(P<0.05). 3. Ti-6Al-4V alloy exhibited significantly greater elongation than control group when the laser welding method and electron beam welding method were used, and elongation showed increasing tendency. 4. Pure titanium specimens exhibited increasing tendency of microhardness regardless of the weld-ing technique applied, and especially tungsten arc welded group demonstrated a great increase of microhardness than parent metal. 5. There was no hardness change in laser welded group and electron beam welded group of Ti-6Al-4V alloy, but in tungsten arc welded group, hardness changed greatly from parent metal to weld seam. 6. Through the metallographic examination and scanning electron microscopy, laser welding caused central fusion and recristallizations were formed and tungsten arc welding caused localized fusion to 0.3-0.7mm from the surface.

  • PDF

A STUDY ON CYTOTOXICITY OF THE NEW TITANIUM ALLOYS FOR DENTAL IMPLANT MATERIAL (Dental Implant 금속재료의 성분차이에 따른 세포독성에 관한 연구)

  • Kim, Tae-In;Han, Jun-Hyun;Lee, In-Seok;Lee, Kyu-Hwan;Shin, Myung-Chul;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.675-686
    • /
    • 1996
  • Today, dental implants are an acceptable alternative, capable of providing bone-anchored fixed prostheses for improved quality of life and self esteem for many patients. Research advances in dental implantology have led to the development of several different types of materials, and it is anticipated that continued research will likewise lead to advanced dental implant materials. Currently used pure titanium has relatively low hardness and strength which possibly limits its ability to resist the functional loads as a dental implant. Ti-6Al-4V also has potential problems such as corrosion resistance, bone biocompatibility etc. The carefully selected Zr, Nb, Ta, Pd, In constituents could improve mechanical strength, corrosion resistance, and biocompatibility compared to that of currently used implant metals. On the basis of the totality of the data from our study, it can be concluded that new titanium alloys containing Zr, Nb, Ta, Pd, In are able to provide improved mechanical properties, corrosion resistance and biocompatibility to warrant further investigation of it's potential as new biomaterials for dental implants.

  • PDF

Nanodispersion-Strengthened Metallic Materials

  • Weissgaerber, Thomas;Sauer, Christa;Kieback, Bernd
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.441-448
    • /
    • 2002
  • Dispersions of non-soluble ceramic particles in a metallic matrix can enhance the strength and heat resistance of materials. With the advent of mechanical alloying it became possible to put the theoretical concept into practice by incorporating very fine particles in a flirty uniform distribution into often oxidation- and corrosion- resistant metal matrices. e.g. superalloys. The present paper will give an overview about the mechanical alloying technique as a dry, high energy ball milling process for producing composite metal powders with a fine controlled microstructure. The common way is milling of a mixture of metallic and nonmetallic powders (e.g. oxides. carbides, nitrides, borides) in a high energy ball mill. The heavy mechanical deformation during milling causes also fracture of the ceramic particles to be distributed homogeneously by further milling. The mechanisms of the process are described. To obtain a homogeneous distribution of nano-sized dispersoids in a more ductile matrix (e.g. aluminium-or copper based alloys) a reaction milling is suitable. Dispersoid can be formed in a solid state reaction by introducing materials that react with the matrix either during milling or during a subsequent heat treatment. The pre-conditions for obtaining high quality materials, which require a homogeneous distribution of small dis-persoids, are: milling behaviour of the ductile phase (Al, Cu) will be improved by the additives (e.g. graphite), homogeneous introduction of the additives into the granules is possible and the additive reacts with the matrix or an alloying element to form hard particles that are inert with respect to the matrix also at elevated temperatures. The mechanism of the in-situ formation of dispersoids is described using copper-based alloys as an example. A comparison between the in-situ formation of dispersoids (TiC) in the copper matrix and the milling of Cu-TiC mixtures is given with respect to the microstructure and properties, obtained.

The Strength Properties of Metal Matrix Composites by Binder Additives (금속기복합재료의 바인더 첨가제에 따른 강도 특성)

  • Park, Won-Jo;Huh, Sun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1051-1057
    • /
    • 2003
  • This study is about controlled impurities, which make metal alloys, especially AC4CH alloy that is made by restraining 0.2% Fe and Aluminum to make a matrix material. A metal matrix composite is produced using the squeeze casting method. The first step in the squeeze casting method is to add some organic binder including aluminum borate whisker into the matrix. After the fabrication of a metal matrix composite, each is individually appended to an inanimate binder such as SiO$_2$, Al$_2$O$_3$, and TiO$_2$. Through experiments the mechanical property changes were investigated between the metal matrix composite and AC4CH alloy. This study proves the superiority of the mechanical property of a metal matrix composites over AC4CH according to the previous tests and results that were mentioned above. One excellent property of matrix material composites is the infiltrated TiO$_2$ reinforcement. This material is a good substitute for the existing materials that are used in the development of industries today.