• Title/Summary/Keyword: Ti-doped $In_2O_3$

Search Result 339, Processing Time 0.036 seconds

Development of PTCR Ceramics Device Fabricated by Liquid Phase Addition Method (액상첨가법에 의한 PTCR세라믹스 소자 개발)

  • Lee, Dong-Soo;Yun, Young-Ho;Park, Sung;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.703-712
    • /
    • 1997
  • The PTCR devices of BaTiO3 doped with Sb2O3, SiO2 were prepared by Liquid Addition Method(LPAM) where doping sources were used in the forms of Liquid. The amounts of doping in LPMA is smaller than that in solid state mixing method. Also the doping process in LPMA is very suitable for BaTiO3-based PTCR devices because it is easy to obtain homogeneous mixing and reproductivity. By optimizing the doping condition in BaTiO3 system, (0.09 mol% Sb2O3, 0.25 wt% SiO2 and 0.02 wt% MnO2) it was possible to fabricate BaTiO3-based PTCR devices whee the room-temperature resistivity and specific resistivity were 15{{{{ OMEGA }}cm and 2$\times$106 respectively.

  • PDF

Effects of Al2O3 on the Piezoelectric Properties of Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 Ceramics (Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 세라믹스의 압전특성에 미치는 Al2O3의 영향)

  • Kim Mi-Jung;Kim Jae-Chang;Kim Young-Min;Ur Soon-Chul;Kim Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.453-457
    • /
    • 2005
  • Piezoelectric properties of $Pb(Mn_{1/3}Nb_{2/3})O_3-PbZrO_3-PbTiO_3$ ceramics were investigated with $Al_2O_3$ content $(0.0-1.0 wt\%)$. The constituent phases, microstructure, electromechanical coupling factor, dielectric constant, piezoelectric charge and voltage constants were analyzed. Diffraction peaks for (002) and (200) planes were identified by X-ray diffractometer for all the specimens doped with $Al_2O_3$, indicating the MPB (morphotropic phase boundary) composition of tetragonal structures. The highest sintered density of $7.8 g/cm^3$ was obtained for $0.2wt\%\;Al_2O_3-doped$ specimen. Grain size increased by doping $Al_2O_3$ up to $0.3 wt\%$, and it decreased by more doping. Electromechanical coupling factor, dielectric constant, piezoelectric charge and voltage constants increased by doping $Al_2O_3$ up to $0.2wt\%$, and it decreased by more doping. This might result from the formation of oxygen vacancies due to defects in $O^{2-}$ ion sites and the substitution of $Al^{3+}$ ions.

선형대향타겟 스퍼터를 이용하여 성막시킨 InSnTiO 박막의 특성 연구

  • Sin, Hae-In;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.245-245
    • /
    • 2016
  • 본 연구에서는 선형 대향 타겟 스퍼터 (Linear Facing Target Sputtering: LFTS) 시스템을 이용하여 ITO와 Ti doped $In_2O_3$ (TIO) 타겟을 Co-sputtering한 InSnTiO 투명 전극의 전기적, 광학적 특성을 연구하였다. InSnTiO 투명전극의 전기/광학적 및 구조적 특성은 Hall measurement, UV/Vis spectrometry, X-ray Diffraciton 분석법을 통해 최적화 하였고, DC power, substrate to target distance (TSD), target to target distance (TTD), ambient treatment 변수 조절을 통해 최적화된 LFTS InSnTiO 투명전극을 제작하였다. LFTS 공정을 이용한 InSnTiO 투명전극의 성막 공정 중 DC파워와 공정압력 변화에 따른 구조적, 표면적 특성 변화는 Field-Emission Scanning Electron Microscopy (FE-SEM) 과 X-ray Diffractometer (XRD) 분석을 통해 관찰하였다. 이렇게 증착된 InSnTiO 투명전극은 급속열처리 시스템으로 (Rapid Thermal Annealing system) 후열처리를 진행하여 투과도의 향상과 면저항의 감소를 확인하였다. 본 연구에서는 다양한 분석을 통해 Co-sputtering한 InSnTiO 박막의 특성과 다양한 장점을 소개한다.

  • PDF

Fabrication of High-Efficiency Electrochemiluminescence Cell with Nanocrystalline TiO2 Electrode (나노입자 이산화티타늄 전극 기반의 고효율 전기화학형 발광 셀 제작)

  • Kwon, Hyuk-Moon;Han, Chi-Hwan;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.363-368
    • /
    • 2010
  • In this work, electrochemiluminescence (ECL) cell using nanocrysralline $TiO_2$ electrode and Ru(II) complex (Ru${(bpy)_3}^{2+}$) is fabricated for low-cost high-efficient energy conversion device application. The nanocrysrallme $TiO_2$ layer (${\sim}10{\mu}m$ thickness) with large surface area (${\sim}360m^2$/g) can largely inject electrons from nanoporous $TiO_2$ electrode and allows the oxidation/reduction of Ru(II) complex in the nanopores. The cell structure is composed of a glass/ F-doped $SnO_2$(FTO)/ porous $TiO_2$/ Ru(II) complex in acetonitrile/ FTO/ glass. The nanocrysralline $TiO_2$ layer is prepared using sol-gel combustion method. The ECL efficiency of the cell consisting of the porous $TiO_2$ layers was 250 cd/W, which was higher than that consisting of only FTO electrode (50cd/W). The nanoporous $TiO_2$ layers wwas effective for increasine ECL intensities.

A comparative study on the flux pinning properties of Zr-doped YBCO film with those of Sn-doped one prepared by metal-organic deposition

  • Choi, S.M.;Shin, G.M.;Joo, Y.S.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.15-20
    • /
    • 2013
  • We investigated the flux pinning properties of both 10 mol% Zr-and Sn-doped $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) films with the same thickness of ~350 nm for a comparative purpose. The films were prepared on the $SrTiO_3$ (STO) single crystal substrate by the metal-organic deposition (MOD) process. Compared with Sn-doped YBCO film, Zr-doped one exhibited a significant enhancement in the critical current density ($J_c$) and pinning force density ($F_p$). The anisotropic $J_{c,min}/J_{c,max}$ ratio in the field-angle dependence of $J_c$ at 77 K for 1 T was also improved from 0.23 for Sn-doped YBCO to 0.39 for Zr-doped YBCO. Thus, the highest magnetic $J_c$ values of 9.0 and $2.9MA/cm^2$ with the maximum $F_p$ ($F_{p,max}$) values of 19 and $5GN/m^3$ at 65 and 77 K for H // c, respectively, could be achieved from Zr-doped YBCO film. The stronger pinning effect in Zr-doped YBCO film is attributable to smaller $BaZrO_3$ (BZO) nanoparticles (the average size ${\approx}28.4$ nm) than $YBa_2SnO_{5.5}$ (YBSO) nanoparticles (the average size ${\approx}45.0$ nm) incorporated in Sn-doped YBCO film since smaller nanoparticles can generate more defects acting as effective flux pinning sites due to larger incoherent interfacial area for the same doping concentration.

Brush-painted Ti-doped In2O3 Transparent Conducting Electrodes Using Nano-particle Solution for Printable Organic Solar Cells

  • Jeong, Jin-A;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.458.2-458.2
    • /
    • 2014
  • We have demonstrated that simple brush-painted Ti-doped $In_2O_3$(TIO) films can be used as a cost effective transparent anodes for organic solar cells (OSCs). We examined the RTA effects on the electrical, optical, and structural properties of the brush painted TIO electrodes. By the direct brushing of TIO nanoparticle ink and rapid thermal annealing (RTA), we can simply obtain TIO electrodes with a low sheet resistance of 28.25 Ohm/square and a high optical transmittance of 85.48% under atmospheric ambient conditions. Furthermore, improvements in the connectivity of the TIO nano-particles in the top region during the RTA process play an important role in reducing the resistivity of the brush-painted TIO anode. In particular, the brush painted TIO films showed a much higher mobility ($33.4cm^2/V-s$) than that of previously reported solution-process transparent oxide films ($1{\sim}5cm^2/V-s$) due to the effects of the Ti dopant with higher Lewis acid strength (3.06) and the reduced contact resistance of TIO nanoparticles. The OSCs fabricated on the brush-painted TIO films exhibited cell-performance with an open circuit voltage (Voc) of 0.61 V, shot circuit current (Jsc) of $7.90mA/cm^2$, fill factor (FF) of 61%, and power conversion efficiency (PCE) of 2.94%. This indicates that brush-painted TIO film is a promising cost-effective transparent electrode for printing-based OSCs with its simple process and high performance.

  • PDF

The piezoelectric and dielectric properties of $MnO_2$ doped $0.36Pb(Sc_{1/2}Nb_{1/2})O_{3}-0.25Pb(Ni_{1/3}Nb_{2/3})O_{3}-0.39PbTiO_3$ ceramics ($MnO_2$가 첨가된 0.36PSN-0.25PNN-0.39PT세라믹스의 유전 및 압전특성)

  • Jang, Jeong-Wan;Lee, Jong-Deok;Park, Sang-Man;Lee, Sung-Gap;Park, Gi-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1809-1811
    • /
    • 2000
  • High power piezoelectric materials are presently being extensively developed for applications such as ultrasonic motors and piezoelectric transformer In this study, the piezoelectric and dielectric properties of $MnO_2$ doped $0.36Pb(Sc_{1/2}Nb_{1/2})O_{3}-0.25Pb(Ni_{1/3}Nb_{2/3})O_{3}-0.39PbTiO_3$ (hereafter PSNNT), which is the morphotropic phase boundary composition of the PSN-PNN-PT system were investigated. $MnO_2$-addition into the $0.36Pb(Sc_{1/2}Nb_{1/2})O_{3}-0.25Pb(Ni_{1/3}Nb_{2/3})O_{3}-0.39PbTiO_3$ composition increases the piezoelectric coefficient up to $k_{p}{\fallingdotseq}$55.6[%] and $Q_{m}{\fallingdotseq}$252. Moreover, $MnO_2$ addition makes tetragonal phase more stable with respect to rhombohedral phase.

  • PDF

Effect of $M_{2}CO_{3}$(M=Li, Na) Addition on the Humidity Sensitivity of $V_{2}O_{5}$-doped $TiO_2$ ($V_{2}O_{5}$를 dopant로 한 $TiO_2$의 감습에 미치는 $M_{2}CO_{3}$(M=Li, Na)의 영향)

  • 강이국;송창열;신용덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.343-346
    • /
    • 1995
  • In this paper, the effect of alkaline oxides on the humidity sensitivity of $V_2O_{5}$(2mol%)-doped $TiO_2$(98mol%) was investigated as functions of $Li_{2}Co_{3}$, $Na_{2}Co_{3}$. III-1. Measurement of Density. When the mole% of $Li_2$O is varied 0,1,2,5mol%, the more the mole% of additives is increased, the more difference of bulk and apparent density is largely narrowed. The difference of two densities of sample containing 2mol% $Na_2O$ was large all the moat. The sample containing 1mol% $Na_2O$ was small most. III-2. Observation of porosity. The porosity and total intrusion volume according to various amounts of $Li_2O$ was reduced and those of sample containing 2mol% $Na_2O$ as 31.13%, 0.1155mL/g was the highest and 1mol% $Na_2O$ was lowed most and 5, 10mol% $Na_2O$ was more high compare with sample without alkaline oxides. III-3. Characteristic of humidity sensitivity. 1. Impedance of samples containing $Li_2O$ was high compare with sample without alkaline oxides, so we thought it showed Poor sensitivity because it have no impedance changing rapidly as function of relative humidity. 2. When the humidity was increasing from 30RH% to 90RH%, the impedance of sample containing 2mol% $Na_2O$ at 120HZ changed exponential rapidly from 6${\times}$$10^{7}$$\Omega$) to 1.25${\times}$$10^4$$\Omega$. At under 50RH% and over 50RH%, the humidity sensitivity of samples containing 2mol% $Na_2O$ was best especially in the range of the low humidity. III-4. Characteristic of TG curves. When algal me oxide $M_{2}CO_{3}$(M=Li, Na) were added into $V_{2}O_{5}$-doped $TiO_2$, the stability of humidity sensitivity of samples containing amounts of $Li_2O$ was unstable. The samples containing 1mol% $Na_2O$ was unstable.

  • PDF

Electrical and Chemical Properties of ultra thin RT-MOCVD Deposited Ti-doped $Ta_2O_5$

  • Lee, S. J.;H. F. Luan;A. Mao;T. S. Jeon;Lee, C. h.;Y. Senzaki;D. Roberts;D. L. Kwong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.202-208
    • /
    • 2001
  • In Recent results suggested that doping $Ta_2O_5$ with a small amount of $TiO_2$ using standard ceramic processing techniques can increase the dielectric constant of $Ta_2O_5$ significantly. In this paper, this concept is studied using RTCVD (Rapid Thermal Chemical Vapor Deposition). Ti-doped $Ta_2O_5$ films are deposited using $TaC_{12}H_{30}O_5N$, $C_8H_{24}N_4Ti$, and $O_2$ on both Si and $NH_3$-nitrided Si substrates. An $NH_3$-based interface layer at the Si surface is used to prevent interfacial oxidation during the CVD process and post deposition annealing is performed in $H_2/O_2$ ambient to improve film quality and reduce leakage current. A sputtered TiN layer is used as a diffusion barrier between the Al gate electrode and the $TaTi_xO_y$ dielectric. XPS analyses confirm the formation of a ($Ta_2O_5)_{1-x}(TiO_2)_x$ composite oxide. A high quality $TaTi_xO_y$ gate stack with EOT (Equivalent Oxide Thickness) of $7{\AA}$ and leakage current $Jg=O.5A/textrm{cm}^2$ @ Vg=-1.0V has been achieved. We have also succeeded in forming a $TaTi_x/O_y$ composite oxide by rapid thermal oxidation of the as-deposited CVD TaTi films. The electrical properties and Jg-EOT characteristics of these composite oxides are remarkably similar to that of RTCVD $Ta_2O_5, suggesting that the dielectric constant of $Ta_2O_5$ is not affected by the addition of $TiO_2$.

  • PDF

Improvement in the negative bias stability on the water vapor permeation barriers on Hf doped $SnO_x$ thin film transistors

  • Han, Dong-Seok;Mun, Dae-Yong;Park, Jae-Hyeong;Gang, Yu-Jin;Yun, Don-Gyu;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.110.1-110.1
    • /
    • 2012
  • Recently, advances in ZnO based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). However, the electrical performances of oxide semiconductors are significantly affected by interactions with the ambient atmosphere. Jeong et al. reported that the channel of the IGZO-TFT is very sensitive to water vapor adsorption. Thus, water vapor passivation layers are necessary for long-term current stability in the operation of the oxide-based TFTs. In the present work, $Al_2O_3$ and $TiO_2$ thin films were deposited on poly ether sulfon (PES) and $SnO_x$-based TFTs by electron cyclotron resonance atomic layer deposition (ECR-ALD). And enhancing the WVTR (water vapor transmission rate) characteristics, barrier layer structure was modified to $Al_2O_3/TiO_2$ layered structure. For example, $Al_2O_3$, $TiO_2$ single layer, $Al_2O_3/TiO_2$ double layer and $Al_2O_3/TiO_2/Al_2O_3/TiO_2$ multilayer were studied for enhancement of water vapor barrier properties. After thin film water vapor barrier deposited on PES substrate and $SnO_x$-based TFT, thin film permeation characteristics were three orders of magnitude smaller than that without water vapor barrier layer of PES substrate, stability of $SnO_x$-based TFT devices were significantly improved. Therefore, the results indicate that $Al_2O_3/TiO_2$ water vapor barrier layers are highly proper for use as a passivation layer in $SnO_x$-based TFT devices.

  • PDF