• 제목/요약/키워드: Ti-based alloys

검색결과 148건 처리시간 0.022초

A kind of NiTi-wire shape memory alloy damper to simultaneously damp tension, compression and torsion

  • Han, Yu-Lin;Yin, Hai-Yang;Xiao, Er-Tian;Sun, Zhi-Lin;Li, Ai-Qun
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.241-262
    • /
    • 2006
  • NiTi-wire shape memory alloy (SMA) dampers, that utilize NiTi SMA wires to simultaneously damp tension, compression and torsion, was developed for structural control implementation in this study. First, eight reduced-scale NiTi-wire SMA dampers were constructed. Then tension, compression and torsion experiments using the eight reduced-scale NiTi-wire SMA dampers of different specification were done. The experimental results revealed all of the eight reduced-scale NiTi-wire SMA dampers had the ability to simultaneously supply tension-compression damping and torsion damping. Finally, mechanics analysis of the NiTi-wire SMA dampers was done based on a model of the SMA-wire restoring force and on tension-compression and torsion damping analysis. The damping analytical results were found to be similar to the damping experimental results.

형상기억합금을 이용한 초소형 액츄에이터 (Shape Memory Alloy Microactuators)

  • 김병욱;김광수;조동일
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.54-61
    • /
    • 1996
  • Because of its high energy density, the use of shape memory alloys(SMA) in designing microactuatiors is gaining much attention in recent years. Shape memory alloys can undergo a shape change at a low temperature with a small applied deformation force, and retain this deformation until they are heated, at which point they return to the original shape. This is called the shape memory effect(SME), and a plethora of alloys show this effect. Among them, TiNi-based alloys have relatively high electrical resistivity, which to develope helical-shape memory springs. These springs are used to develop fast protatonist/antagonist configuration actuators. The developed actuator has an actuation speed of 1 mm per 15 .approx. 20 ms and a minimum operating period of 2 sec.

  • PDF

Experimental studies on the fatigue life of shape memory alloy bars

  • Casciati, Sara;Marzi, Alessandro
    • Smart Structures and Systems
    • /
    • 제6권1호
    • /
    • pp.73-85
    • /
    • 2010
  • The potential offered by the thermo-mechanical properties of shape memory alloys (SMA) in structural engineering applications has been the topic of many research studies during the last two decades. The main issues concern the long-term predictability of the material behaviour and the fatigue lifetime of the macro structural elements (as different from the one of wire segments). The laboratory tests reported in this paper are carried out on bar specimens and they were planned in order to pursue two objectives. First, the creep phenomenon is investigated for two different alloys, a classical Ni-Ti alloy and a Cu-based alloy. The attention is then focused on the Cu-based alloy only and its fatigue characteristics at given temperatures are investigated. Stress and thermal cycles are alternated to detect any path dependency.

티타늄 지대주와 비귀금속 합금사이의 갈바닉 부식에 의한 표면 거칠기 변화 평가 (Surface roughness changes caused by the galvanic corrosion between a titanium abutment and base metal alloy)

  • 이정진;송광엽;안승근;박주미
    • 대한치과보철학회지
    • /
    • 제49권1호
    • /
    • pp.65-72
    • /
    • 2011
  • 연구 목적: 이 연구의 목적은 티타늄 지대주와 비귀금속 보철물이 접촉한 경우를 가정하여 이종 금속간 접촉에 의한 갈바닉 부식으로 인해 발생하는 표면 거칠기 변화를 비교, 평가하고자 하였다. 연구 재료 및 방법: 성분과 조성이 다른 3종의 Ni-Cr합금 (T3, Bella bond plus, Tilite)과 cp 티타늄 Grade 2를 이용하여 $13{\times}13{\times}1.5\;mm$의 크기로 시편을 각 군당 6개씩 제작하였다. 연마과정 후 절연 테이프로 직경 6 mm만을 노출시켜 potentiostat (Parastat 2273A)를 이용하여 동전위 분극 시험과 갈바닉 부식 시험을 시행하였으며, 표면 거칠기 측정기(Surftester SV-3000)를 이용하여 부식 전 후 거칠기를 평가하였다. 측정값을 paired t-test와 One-way ANOVA로 분석하였다. 결과: 티타늄과 접촉한 모든 Ni-Cr 시편의 표면 거칠기는 통계적으로 유의하게 증가하였다. 증가량은 베릴륨을 포함한 T3합금 ($0.016{\pm}.007\;{\mu}m$)이 가장 컸으며, 베릴륨을 포함하지 않은 Bella bond plus ($0.012{\pm}.003\;{\mu}m$), 티타늄을 첨가한 Tilite ($0.012{\pm}.002\;{\mu}m$)는 큰 차이를 보이지 않았다. 금속 종류에 따른 거칠기 증가는 유의한 차이를 보이지 않았다. 결론: 티타늄과 접촉한 비귀금속 합금은 갈바닉 부식에 의해 표면 거칠기가 증가하였다.

Fe 함량에 따른 Ti-5Mo-xFe 준안정 베타 합금의 압축 변형거동 변화 (Change of Compressive Deformation Behaviors of Ti-5Mo-xFe Metastable Beta Alloy According to Fe Contents)

  • 이용재;이재관;이동근
    • 열처리공학회지
    • /
    • 제36권5호
    • /
    • pp.303-310
    • /
    • 2023
  • β titanium alloys are widely used in aerospace industry due to their excellent specific strength and corrosion resistance. In particular, mechanical properties of metastable β titanium can efficiently be controlled by various deformation mechanisms such as slip, twinning, and SIM (Stress-Induced Martensite Transformation), making it an ideal material for many industrial applications. In this study, Ti-5Mo-xFe (x=1, 2, 4 wt%) alloy was designed by adding a relatively inexpensive β element to ensure price competitiveness. Additionally, microstructural analysis was conducted using OM, SEM, and XRD, while mechanical properties were evaluated through hardness and compression tests to consider the deformation mechanisms based on the Fe content. SIMT occurred in all three alloys and was influenced by the presence of βm (metastable beta) and beta stability. As the Fe content decreased, the α'' phase increased due to SIMT occurring within the βm phase, resulting in softening. Conversely, as the Fe content increased, the strength of the alloy increased due to a reduction in α'' formation and the contributions of solid solution strengthening and grain strengthening. Moreover, unlike the other alloys, shear bands were observed only in the fracture of the Ti-5Mo-4Fe alloy, which was attributed to differences in texture and microstructure.

기계적 합금화를 통한 고강도-고내열 Nb-Si-Ti계 합금 개발에 관한 연구 (Development of High-strength, High-temperature Nb-Si-Ti Alloys through Mechanical Alloying)

  • 김정준;윤상민;한덕현;변종민;김영균
    • 한국분말재료학회지
    • /
    • 제31권1호
    • /
    • pp.30-36
    • /
    • 2024
  • The aerospace and power generation industries have an increasing demand for high-temperature, high-strength materials. However, conventional materials typically lack sufficient fracture toughness and oxidation resistance at high temperatures. This study aims to enhance the high-temperature properties of Nb-Si-Ti alloys through ball milling. To analyze the effects of milling time, the progression of alloying is evaluated on the basis of XRD patterns and the microstructure of alloy powders. Spark plasma sintering (SPS) is employed to produce compacts, with thermodynamic modeling assisting in predicting phase fractions and sintering temperature ranges. The changes in the microstructure and variation in the mechanical properties due to the adjustment of the sintering temperature provide insights into the influence of Nb solid solution, Nb5Si3, and crystallite size within the compacts. By investigating the changes in the mechanical properties through strengthening mechanisms, such as precipitation strengthening, solid solution strengthening, and crystallite refinement, this study aims to verify the applicability of Nb-Si-Ti alloys in advanced material systems.

철기제진합금의 전기화학적 부식특성 (Electrochemical Corrosion Characteristics of the Iron-based Damping Alloy)

  • 심현이;지층수;이진형;이규환;신명철
    • 분석과학
    • /
    • 제8권1호
    • /
    • pp.85-90
    • /
    • 1995
  • 4종류의 Fe-Al 제진합금의 3.5% NaCl 염수에서의 부식특성을 냉간압연강판 및 순수한 티타늄과 함께 연구하였다. 티타늄의 경우 부동태현상이 관찰되었으나 Fe-Al 제진함금과 냉간압연강판의 경우 부동태현상이 관찰되지 않았다. 탄소 함유량이 적을수록 부식속도가 낮은 값을 나타내었다. 그러나 제진특성 향상을 위하여 첨가한 Mn은 고철에서는 부식속도를 저하시키는 효과를 보았으나 전해철에서는 부식속도를 오히려 증가시키는 경향을 보였다. Fe-Al 제진합금의 부식속도는 순수한 티타늄보다는 높은 값을 보였지만 냉간압연강판보다는 훨씬 낮은 값을 나타내었다.

  • PDF

교반관법에 의한 Mg 기지 수소저항합금의 대량제조와 반복적 수소화 반응에 따른 수소화 특성 및 열화특성 평가 (Mass Production of Mg based Hydrogen Absorbing Alloys and Evalution of Hydrogenation and Degradation Properties by Hydriding/Dehydriding Cyclic Test)

  • 하원;이성곤;홍태환;김영직
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.13-23
    • /
    • 2002
  • Hydrogenation properties of Mg-Ni and Mg-Ti-Ni alloys were investigated by Pressure-Composition Isotherm (PCI) test. Those alloys were fabricated by a new alloying method, Rotation-Cylinder Method (RCM). The as-cast microstructure of Mg-10 mass% Ni alloy consists of an island-like hydride forming $\alpha$-Mg phase and the eutectic structure. After 350 cyclic tests, Mg-lO mass % Ni alloy was pulverized into fine particles of 100 nm. The fine particles, which have a large specific surface area, are highly reactive with hydrogen. However, extreme pulvehzation can separate Mg from $Mg_2Ni$ in the eutectic structure, so $Mg_2Ni$ of the eutectic structure cannot behave as a dissociated hydrogen supplier.

은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징 (Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals)

  • 허대;김대훈;천병선
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

Ti-6Al-4V 합금 항공기 부품 가공 시 발생하는 절삭추력 및 소성변형에 대한 해석 (Analysis of Cutting Force and Plastic Deformation Occurring During Machining of Ti-6Al-4V Alloy Aircraft Parts)

  • 손휘준;김석;박기범;정현철;조영태
    • 한국기계가공학회지
    • /
    • 제21권8호
    • /
    • pp.25-31
    • /
    • 2022
  • Recently, investment in the aerospace industry has increased, and titanium alloys have been widely adopted for manufacturing parts in the aerospace industry. The Ti-6Al-4V alloy has high strength in high-temperature and high-pressure environments and is evaluated as a material with excellent heat, corrosion, and abrasion. However, titanium alloys are expensive, difficult to cut, and possess a large cutting load during the drilling process. In this study, the cutting force generated in the drilling process of Ti-6Al-4V alloy was verified via finite element analysis (FEM) and cutting force measurement experiments. A structural analysis was performed based on the cutting analysis data to verify the plastic deformation occurring during the drilling process of cylindrical Ti-6Al-4V alloy aircraft parts. Methods were proposed to predict the amount of deformation that occur during the manufacturing process of titanium-alloy aircraft parts and control the external environment, to minimize the amount of deformation.