• Title/Summary/Keyword: Ti-Mn 합금

Search Result 79, Processing Time 0.021 seconds

Effects of the Brazing Bonding between Al2O3 and STS304 with an Ion Beams (이온빔을 이용한 STS304와 알루미나 브레이징 접합효과)

  • Park, Il-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8679-8683
    • /
    • 2015
  • Using a surface modification technique, ion beam assisted deposition (IBAD) of Ti thin film it becomes possible to prepare an active ceramic surface to braze $Al_2O_3$-STS304 with conventional Ag-Cu eutectic composition filler metal. Researches on bonding formations at interfaces of ceramic joints were mainly related on the development of filler metals to ceramic, the process parameters, and clarifications of reaction products. From the results, the reactive brazing is a very convenient technique compared to the conventional Mn-Mo method. However melting point of reactive filler is still higher than that of Ag-Cu eutectic and it forms the brittle inter metallic compound. Recently several new approaches are introduced to overcome the main shortcomings of the reactive metal brazing in ceramic-metal, metal vapor vacuum arc ion source was introduced to implant the reactive element directly into the ceramics surface, and sputter deposition with sputter etching for the deposition of active material.

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

Effect of the compacting additives on the Discharge Characteristics of the Negative Electrode for Ni-MH Battery (니켈-수소저장합금전지 음극의 방전특성에 미치는 성형첨가제의 영향)

  • Jung, Jae-Han;Lee, Han-Ho;Kim, Dong-Myung;Lee, Kee-Young;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.2
    • /
    • pp.65-73
    • /
    • 1995
  • Negative electrode was prepared by mixing $Ti_{0.7}Zr_{0.3}Cr_{0.3}Mn_{0.3}V_{0.6}Ni_{0.8}$ alloy powder with copper or nickel powder and pressing in the air. The cycled electrodes were analyzed with SEM, potentiostat and electrochemical impedance spectroscopy. It was found that the Cu-compacted electrode showed better low temperature dischargeability and higher rate capability than Ni-compacted electrode. From SEM analysis of the cycled electrode compacted with copper powder, it was observed that the surface of MH particles was covered with copper grains and whisker precipitated from electrolyte after dissolution during cell test. It is found that the improved electrode characteristics are attributed to the copper layer on MH particles deposited by dissolution and precipitation(DP) process.

  • PDF

A Study on the Electrode Charcteristics of the Fluornated AB$_2$ Type Hydrogen Storage Alloys (불화 처리된 AB$_2$계 수소저장합금의 전극특성에 관한 연구)

  • 박호영;이명호;조원일;조병래;이성래;주재백;윤경석
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.262-271
    • /
    • 1997
  • Nickel-matal hydride(Ni-MH) batteries are receiving attention as non-pollunting. high performance rehargeable energy stoage system. The performance of Ni-Mh is significantly influenced by the hydrogen storage alloy materiels used as an anode material. Recently, having discharge capacities higher than the $AB_5$-type hydrogen storage alloys, the Zr-based $AB_2$-Type hydrogen storage alloys has remaining problems regarding cycle life and self-dischareg. These problems need to be solved by improvements in the alloy design and/or surface treatment. This work investiggates the effects the effects of surface property by fluorination on $Zr_{0.7}Ti_{0.3}V_{0.4}Mn_{0.4}Ni{1.2}$ composittion $AB_2$-Type hydrogen storage alloys. EPMA, SEM and AES techniques were used for surface analysis, and the crystal structure was characterized by constant current cycling test and potential sweep methods. Fluorination was found to be effective when La-was incorporated into the alloy, and has unique morphology, higher reactivity, and at the same time formed a protective film. Through, fluorination, the cycle life of an electrode was found to increase significantly, charge/discharge characteristics of the electrode the potential difference between the charge/discharge plateau, i.e polarization(overpotential)were improved.

  • PDF

Prediction of Jominy Hardness Curves Using Multiple Regression Analysis, and Effect of Alloying Elements on the Hardenability (다중 회귀 분석을 이용한 보론강의 조미니 경도 곡선 예측 및 합금 원소가 경화능에 미치는 영향)

  • Wi, Dong-Yeol;Kim, Kyu-Sik;Jung, Byoung-In;Lee, Kee-Ahn
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.781-789
    • /
    • 2019
  • The prediction of Jominy hardness curves and the effect of alloying elements on the hardenability of boron steels (19 different steels) are investigated using multiple regression analysis. To evaluate the hardenability of boron steels, Jominy end quenching tests are performed. Regardless of the alloy type, lath martensite structure is observed at the quenching end, and ferrite and pearlite structures are detected in the core. Some bainite microstructure also appears in areas where hardness is sharply reduced. Through multiple regression analysis method, the average multiplying factor (regression coefficient) for each alloying element is derived. As a result, B is found to be 6308.6, C is 71.5, Si is 59.4, Mn is 25.5, Ti is 13.8, and Cr is 24.5. The valid concentration ranges of the main alloying elements are 19 ppm < B < 28 ppm, 0.17 < C < 0.27 wt%, 0.19 < Si < 0.30 wt%, 0.75 < Mn < 1.15 wt%, 0.15 < Cr < 0.82 wt%, and 3 < N < 7 ppm. It is possible to predict changes of hardenability and hardness curves based on the above method. In the validation results of the multiple regression analysis, it is confirmed that the measured hardness values are within the error range of the predicted curves, regardless of alloy type.

Effect of Sc, Sr Elements on Eutectic Mg2Si Modification and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy (주조용 Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe 합금의 공정 Mg2Si 개량과 주조특성에 미치는 Sc, Sr 첨가원소의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.147-154
    • /
    • 2015
  • The effects of Sc and Sr elements on the modification of the eutectic $Mg_2Si$ phase and the castability were investigated in the Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe alloy. Measurements of the cooling curve and microstructure observations were performed to analyze the additional effects of Sc and Sr minor elements during the solidification process. A prominent effect found on the modification of the eutectic $Mg_2Si$ phase with additions of the Sr and Sc elements. Here, a fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident with an addition of Sc element up to 0.2 wt%. The growth temperature of the eutectic $Mg_2Si$ phase decreased and the effect on the modification of the eutectic $Mg_2Si$ phase increased with the addition of Sr element up to 0.02 wt%. The addition of 0.02wt%Sr had the strongest effect on the modification of the eutectic $Mg_2Si$ phase, and the resulting microstructure of the eutectic $Mg_2Si$ phase was found to have a fibrous morphology with a decreased aspect ratio and an increased modification ratio. Fluidity and shrinkage tests were conducted to evaluate the castability of the alloy. The addition of 0.02wt%Sr effectively increased the fluidity of the alloy, while an addition of Sc did not show any effect compared to when nothing was added. The maximum filling length was recorded for 0.01wt%TiB-0.02wt%Sr owing to the effect of the fine ${\alpha}$-Al grains. The macro-shrinkage ratio decreased, while the micro-shrinkage ratio increased with the addition of various eutectic modifiers. The highest ratio of micro-shrinkage was recorded for the 0.02wt%Sr condition. However, the total shrinkage ratio was nearly identical regardless of the amounts added in this study.

Thermal Stability of $\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) Amorphous Alloys ($\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) 비정질합금의 열적안정성)

  • Guk, Jin-Seon;Jeon, U-Yong;Jin, Yeong-Cheol;Kim, Sang-Hyeop
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.218-223
    • /
    • 1997
  • At the aim of finding a Fehased amorphous alloy with a wide supercooled liquid region (${\Delta}T_{x}=T_{x}-T_{g}$) before crystallization, the changes in glass transition temperatudfI$T_{g}$ and crystallization temperature ($T_{x}$) by the dissolution of additional M elements were examined for the $Fe_{80}P_{10}C_{6}B_{4}$(x~6at%. M= transition metals) amorphous alloys. The ${\Delta}T_{x}$ value is 27K for the Fe,,,P,,,C,,R, alloy and increases to 40K for the addition of M=4at%Hf, 4at%Ta or 4at%Mo. The increase in ${\Delta}T_{x}$ is due to the increase of $T_{x}$ exceeding the degree in the increase in $T_{g}$. The $T_{g}$ and $T_{x}$ increase with decreasing electron concentration (e/a) from about 7 38 to 7.05. The decrease of e/a also implies the increase in the attractive bonding state between the M elements and other constitutent elements. It is therefore said that $T_{g}$ and $T_{x}$ increase kith increasing attractive bonding force.

  • PDF

The Electrode Characteristics of the Sintered AB5-type Metal Hydrogen Storage Alloy for Ni-MH Secondary Battery (Ni-MH 2차전지용 AB5계 수소저장합금의 소결에 따른 전극 특성)

  • Chang, Sang-Min;Park, Won;Choi, Seung-Jun;Noh, Hak;Choi, Jeon;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.2
    • /
    • pp.157-164
    • /
    • 1996
  • The AB5-type metal hydride electrodes using $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$(LM : Lanthaniumrich Mischmetal) alloy powders(${\leq}200$mesh) which were coated with 25wt% copper in an acidic bath were prepared with or without addition of 10wt% PTFE as a binder. Prior to electrochemical measurements, the electrodes were sintered at $40^{\circ}C$ for 1 and 2hrs in vacuum with Mm(mischmetal) and sponge type Ti getters. The properties such as maximum capacity, cycle life and mechanical strength of the negative electrode have been investigated. The surface analysis of the electrode was also obtained before and after charge-discharge cycling using scanning electron microscope(SEM). From the observations of electrochemical behavior, it was found that the sintered electrode shows a lower maximum discharge capacity compared with non-sintered electrode but it shows a better cycle life. For the both electrodes with or without addition of PTFE binder, the values of mechanical strength were obtained, and their values increased with increasing sintering time. However, there is little difference of discharge capacity for both electrodes.

  • PDF

Effect of Alloying Elements and Homogenization Treatment on Carbide Formation Behavior in M2 High Speed Steels (합금성분변화와 균질화처리에 따른 M2 고속도강의 탄화물 형성거동)

  • Ha, Tae Kwon;Yang, Eun Ig;Jung, Jae Young;Park, Shin Wha
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.589-597
    • /
    • 2010
  • In the present study, the effect of variation in alloying elements on the carbide formation behavior during casting and homogenization treatment of M2 high speed steels was investigated. M2 high speed steels of various compositions were produced by vacuum induction melting. Contents of C, Cr, W, Mo, and V were varied from the basic composition of 0.8C, 0.3Si, 0.2Mn, 4.0Cr, 6.0W, 5.0Mo, and 2.0V in weight percent. Homogenization treatment at $1150^{\circ}C$ for 1.5 hr followed by furnace cooling was performed on the ingots. Area fraction and chemical compositions of eutectic carbide in as-cast and homogenized ingots were analyzed. Area fraction of eutectic carbide appeared to be higher in the ingots with higher contents of alloying elements the area fraction of eutectic carbide also appeared to be higher on the surface regions than in the center regions of ingots. As a result of the homogenization treatment, $M_2C$ carbide, which was the primary eutectic carbide in the as-cast ingots, decomposed into thermodynamically stable carbides, MC and $M_6C$. The latter carbide was found to be the main one after homogenization. Fine carbides uniformly distributed in the matrix was found to be MC type carbide and coarsened by homogenization.