Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.12.781

Prediction of Jominy Hardness Curves Using Multiple Regression Analysis, and Effect of Alloying Elements on the Hardenability  

Wi, Dong-Yeol (Department of Materials Science and Engineering, Inha University)
Kim, Kyu-Sik (Department of Materials Science and Engineering, Inha University)
Jung, Byoung-In (POSCO)
Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
Publication Information
Korean Journal of Materials Research / v.29, no.12, 2019 , pp. 781-789 More about this Journal
Abstract
The prediction of Jominy hardness curves and the effect of alloying elements on the hardenability of boron steels (19 different steels) are investigated using multiple regression analysis. To evaluate the hardenability of boron steels, Jominy end quenching tests are performed. Regardless of the alloy type, lath martensite structure is observed at the quenching end, and ferrite and pearlite structures are detected in the core. Some bainite microstructure also appears in areas where hardness is sharply reduced. Through multiple regression analysis method, the average multiplying factor (regression coefficient) for each alloying element is derived. As a result, B is found to be 6308.6, C is 71.5, Si is 59.4, Mn is 25.5, Ti is 13.8, and Cr is 24.5. The valid concentration ranges of the main alloying elements are 19 ppm < B < 28 ppm, 0.17 < C < 0.27 wt%, 0.19 < Si < 0.30 wt%, 0.75 < Mn < 1.15 wt%, 0.15 < Cr < 0.82 wt%, and 3 < N < 7 ppm. It is possible to predict changes of hardenability and hardness curves based on the above method. In the validation results of the multiple regression analysis, it is confirmed that the measured hardness values are within the error range of the predicted curves, regardless of alloy type.
Keywords
boron steels; hardenability; jominy test; multiple regression analysis; multiplying factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. I. Titova, N. A. Shulgan and I. Yu. Malykhina, Met. Sci. Heat Treat., 49, 39 (2007).   DOI
2 N. Dudova, R. Mishnev and R. Kaibyshev, ISIJ Int., 51, 1912 (2011).   DOI
3 S. N. Ghali, H. S. El-Faramawy and M. M. Eissa, J. Miner. Mater. Char. Eng., 11, 995 (2012).   DOI
4 J. A. Jimenz, G. Gonzalez-Doncel and O. A. Ruano, Adv. Mater., 7, 130 (1995).   DOI
5 P. E. Busby, M. E. Warga and C. Wells, JOM, 5, 1463 (1953).   DOI
6 Y. J. Li, D. Ponge, P. Choi and D. Raabe, Ultramicroscopy, 159, 240 (2015).   DOI
7 T.-K. Ho, Ph.D. Thesis (in English), Iowa State University, USA (1978).
8 W. G. Vermeulen, P. J. van der Wolk, A. P. de Weijer and S. van der Zwaag, JMEPEG, 5, 57 (1996).   DOI
9 J. Komenda, R. Sandstrom and M. Tukiainen, Steel research, 68, 132 (1997).   DOI
10 S. H. Shin and J. H. Chae, J. Korean Soc. for Heat Treatment, 2, 40 (1989).
11 B. Jansson, Jemkontoret Rep. D, 694, 1 (1993).
12 W. J. Foy, Bachelor Thesis (in English), Montana Tech., USA (1943).
13 Y. Lu, Master Thesis (in English), McGill University, Canada (2007).
14 W. F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., p. 63, McGraw Hill, New York, USA (1981).
15 B. Hwang, D.-W. Suh and S.-J. Kim, Scr. Mater., 64, 1118 (2011).   DOI
16 A. Deva, N. K. Jha and B. K. Jha, Int. J. Metall. Eng., 1, 1 (2012).   DOI
17 H. Asahi, ISIJ Int., 42, 1150 (2002).   DOI
18 B. Hwang, Korean J. Mater. Res., 25, 497 (2015).   DOI
19 Y.-S. Choi, S.-J. Kim, I.-M. Park, K.-W. Kwon and I.-S. Yoo, Met. Mater. Int., 3, 118 (1997).   DOI
20 K. A. Taylor and S. S. Hansen, Metall. Trans. A, 21, 1697 (1990).   DOI