• Title/Summary/Keyword: Ti-Cr-V alloy

Search Result 50, Processing Time 0.024 seconds

Creep Properties of Plasma Carburized and CrN Coated Ti-6Al-4V Alloy (플라즈마 침탄 및 CrN 코팅된 Ti-6Al-4V 합금의 구조 및 Creep특성)

  • Wey Myeong-Yong;Park Yong-Gwon
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.558-564
    • /
    • 2004
  • In order to improve the low hardness and low wear resistance of Ti-6Al-4V alloy, plasma carburization treatment and CrN film coating were carried out. Effects of the plasma carburization and CrN coating were analyzed and compared with the non-treated alloy by mechanical and creep tests. After plasma carburization and CrN coating treatments, the carburized layer was about 150 ${\mu}m$ in depth and CrN coated layer was about 7.5 ${\mu}m$ in thickness. Hardness value of about $H_{v}$ 402 of the non-treated alloy was improved to $H_{v}$ 1600 and 1390 by plasma carburization and CrN thin film coating, respectively. Stress exponent(n) was decreased from 9.10 in CrN coating specimen to 8.95 in carburized specimen. However, the activation energy(Q) was increased from 242 to 250 kJ/mol. It can be concluded that the static creep deformation for Ti-6Al-4V alloy is controlled by the dislocation climb over the ranges of the experimental conditions.

Study on the Improvement of the Electrochemical Characteristics of Surface-modified V-Ti-Cr alloy by Ball-milling

  • Kim, Jin-Ho;Lee, Sang-Min;Lee, Ho;Lee, Paul S.;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • Vanadium based solid solution alloys have been studied as a potential negative electrode of Ni/MH battery due to their high hydrogen storage capacity. In order to improve the kinetic property of V-Ti alloy in KOH electrolyte, the ball-milling process with Ni, which has a catalytic effect of hydrogen absorption/desorption, was carried out to modify the surface properties of V-Ti-Cr alloys with high hydrogen storage capacity. Moreover, to overcome the problem of poor cycle life, V-Ti alloy substituted by Cr, V0.68 Ti0.20 Cr0.12, has been developed showing a good cycle performance (keeping about 80 % of initial discharge capacity after 200 cycles). The cycle life of surface-modified V0.68 Ti0.20 Cr0.12 alloy was improved by suppressing the formation of TiO2 layer on the alloy surface while decreasing the amount of dissolved vanadium in the KOH electrolyte. In order to promote the effect of Ni coating on the surface property of V0.68 Ti 0.20 Cr 0.12 alloy by ball-milling, filamentary-typed Ni, which has higher surface coverage area than sphere-typed Ni was used as a surface modifier. Consequently, the surface-modified V0.68 Ti0.20 Cr0.12 alloy electrode showed a improved discharge capacity of 460 mAh/g.

  • PDF

Surface Reaction between Phosphate bonded Investment and Ti-Zr-Cr based Alloy for Dental castings (인산염계 주형재와 치과주조용 Ti-Zr-Cr계 합금의 계면반응)

  • Jung, Jong-Hyun;Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.73-78
    • /
    • 2005
  • The surface-reacted layer of titanium castings greatly affects their mechanical properties. This study analyzed the interfacial zone of Ti-20%Zr-5%Cr alloy castings obtained from phosphate bonded investment and examined the relationship between the surface-reacted layer and hardness. The Vickers hardness of cast disks were tested at 20$\mu m$ intervals from the surface to 120$\mu m$ in depth. The cross-section was observed metallurgically, and line profile of the reacted layer was conducted under the EDX. The surface-reacted layer of Ti-20%Zr-5%Cr alloy is showed a similar tendency to Ti-6%Al-4%V alloy in thickness, and also Si diffusion in multiple reacted layer of Ti-20%Zr-5%Cr alloy is less than cp Ti and similar to Ti-6%Al-4%V alloy. The Vickers hardness in the surface layer was greater than in the inner part, and the Vickers hardness of Ti-20%Zr-5%Cr alloy ranged 650 to 390 and cp Ti ranged 810 to 160, Ti-6%Al-4%V alloy ranged 710 to 530 respectively.

  • PDF

Improvement of Fe, Mn or Si Substitution on Hydrogen Storage Properties of Ti-Cr-V Alloys (Fe, Mn, Si 치환에 의한 Ti-Cr-V 합금의 수소저장 특성 향상)

  • Yoo, Jeong-Hyun;Cho, Sung-Wook;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.250-255
    • /
    • 2007
  • Hydrogen storage properties of $Ti_{0.32}Cr_{0.43-X}V_{0.25}M_X$($0{\leq}X{\leq}0.1$, M=Fe, Mn, Si) have been investigated. With varing of Mn content, the lattice parameter of the alloy was unchanged and similar to that of $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy. With increase of Fe, Si content, the lattice parameters of the BCC phases decreased. When the Fe content was 8 at%, the desorption plateau pressure increased to several atmospheres without decrease of the effective hydrogen storage capacity of the alloy. When the Mn content was 8 at%, the effective hydrogen storage capacity showed approximately 2.5 wt% without change in the desorption plateau pressure. With increase of Si content, hysteresis increased and hydrogen storage capacity decreased rapidly. A study was also made on how desorption temperature affected the usable hydrogen of the $Ti_{0.32}Cr_{0.35}V_{0.25}Mn_{0.08}$ alloy. The temperature was varied from 293 to 413 K, and the pressure from 5 to 0.002 MPa. The usable hydrogen of the alloy was 2.7 wt% when absorbed and desorbed at 293 K and 373 K., respectively. The heat of hydride formation of the alloy was approximately -35.5 kJ/mol $H_2$.

Mechanical Properties and Fatigue Characteristics of CrN Coated Ti-6Al-4V alloy (CrN 박막처리된 Ti-6Al-4V 합금의 기계적 성질과 피로특성)

  • Park, Yong-Gwon;Baeg, Chang-Hyung;Wey, Myeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.669-675
    • /
    • 2002
  • CrN film coated by AIP method, improved the mechanical properties (Hardness, Roughness, wear and fatigue) of Ti-6Al-4V alloy. The properties were studied using GXRD, XPS, Hardness, Roughness, wear and fatigue testers. CrN thin film thickness was about 7.5$\mu\textrm{m}$ and grew with (111) orientation. Hardness of CrN thin film was very high (Hv 1390) and roughness of the surface layer was greatly improved (Ra=0.063$\mu\textrm{m}$) compared with matrix alloy (Ra=0.321$\mu\textrm{m}$). Such changes of hardness and roughness could be contributed to improving the wear resistance and fatigue life. Striation like pattern with dimples and voids, a typical fatigue fracture mode, was observed throughout the specimen.

Effects of the Addition of Mn and $AB_5$ Type Alloy on the Electrochemical Characteristics of Ti-Cr-V BCC Type Alloys (BCC계 Ti-Cr-V 합금의 전기화학적 특성에 미치는 Mn 및 $AB_5$계 합금 첨가 효과)

  • Kim, J.Y.;You, J.H.;Park, C.N.;Park, C.J.;Choi, J.;Cho, S.W.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.52-59
    • /
    • 2007
  • We investigated the effects of the addition of Mn and $AB_5$ type alloy on the electrochemical characteristics of Ti-Cr-V BCC type alloys as anode materials for Ni-MH battery. The activation behavior and discharge capacity of the BCC type alloys were significantly improved by ball-milling with the $LmNi_{4.1}Al_{0.25}Mn_{0.3}Co_{0.65}$ alloy, because the $AB_5$ type alloy acted as hydrogen path on the surface of the BCC type alloy. Among the Mn substituted alloys($Mn=0.03%{\sim}0.08%$), the $Ti_{0.32}Cr_{0.38}Mn_{0.05}V_{0.25}$ alloy ball-milled with $AB_5$ type alloy exhibited the greatest discharge capacity of $336\;mAh{\cdot}g^{-1}$. In addition, Mn substituted alloys exhibited the lower plateau pressure in P-C- T curve, the better hydrogen storage capacity and faster surface activation compared with the alloy without Mn.

Hydrogen Isotope Effects in Hydrogen Storage Alloy for Separation and Concentration of Hydrogen Isotopes (수소 동위체의 분리농축을 위한 수소저장합금의 수소 동위체 효과)

  • Cho, Sung-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.4
    • /
    • pp.327-334
    • /
    • 2003
  • 경수소와 중수소를 사용하여 Ti1.0Mn0.9V1.1합금의 경우 313K와 353 K에서, $Ti_{1.0}Cr1.5V_{1.1}$합금의 경우 313 K와 338K에서 각각 수소 동위체 효과를 조사하였다. 합금의 결정구조, 각 상의 존재량, 격자상수 등은 Rietveld method에 의해 결정되었다. 두 합금 모두 용도에 관계 없이 중수소의 흡장량이 경수소에 비하여 많았고, 이들 합금의 수소 동위체 효과는 LaNis 합금에 비하여 대단히 크게 나타났다. 실험 온도 범위에서 $Ti_{1.0}Mn_{0.9}V_{1.1}$합금의 경수소화물은 중수소화물에 비하여 안정하였고, Ti1.0Cr1.5V1.7합금에 있어서는 중수소화물이 더욱 안정하였다. 또한 $Ti_{1.0}Cr_{1.5}V_{1.7}$합금이 $Ti_{1.0}Mn_{0.9}V_{1.1}$합금보다 많은 량의 경수소와 중수소를 흡장하였다.

The effect of Zirconium Nitride coating on shear bond strength with denture base resin in Co-Cr alloy and titanium alloy (질화 지르코늄 코팅이 코발트 크롬 합금과 타이타늄 합금에서 의치상 레진과의 전단결합강도에 미치는 영향)

  • Park, Chan;Lee, Kyoung-Hun;Lim, Hyun-Pil
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.194-201
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate of Zirconium Nitride (ZrN) coating on shear bond strength with denture base resin in Co-Cr and Ti-6Al-4V alloy. Materials and Methods: Co-Cr and Ti-6Al-4V alloy disks (10 mm in diameter, 2.5 mm in thickness; each other: n = 14) were prepared and divided with 2 groups each other by ZrN coating. After primer was applied to disks surface, denture base resin with diameter 6 mm, height 5 mm was bonded on metal disk surface. After surface roughness was measured by Profiler, shear bond strength was determined with Universal testing machine and analyzed with two-way ANOVA. The specimen surfaces and failure mode were examined using a scanning electron microscope. Results: ZrN coated groups showed significantly higher rough surface than non-coated groups (P < 0.05). Irrespective of alloy materials, shear bond strength of ZrN coated groups were lower than non-coated groups (P < 0.001). The scanning electron microscope (SEM) of ZrN coated groups showed mixed and adhesive fractures. Conclusion: ZrN coating weakened bonding strength between denture base resin and Co-Cr, Ti-6Al-4V alloy.

Creep Characteristics of Ti-6Al-4V Alloy Surface Modified by Plasma Carburized/CrN Coating (복합처리(Carburized/CrN Coating)로 표면개질된 Ti-6Al-4V합금의 크리프 특성)

  • Park, Yong-Gwon;Park, Jung-Ung;Wey, Myeong-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.183-189
    • /
    • 2005
  • The effects of duplex-treatment of plasma carburization and CrN coating onto Ti-6Al-4V alloy on its creep properties were investigated by means of a constant stress creep tester. Applying duplex-treatment, specimens having an inner carburized layer of about $150{\mu}m$ in depth and outer CrN layer of about $7.5{\mu}m$ in thickness were prepared. The hardness of duplex-treatment surface was about 1,960 VHN. It also appeared that the duplex-treatment improved the roughness of the surface significantly; $Ra=0.045{\mu}m$ for treated alloy while $Ra=0.321{\mu}m$ for untreated alloy. The steady-state creep behaviors were investigated in a temperature range of $510{\sim}550^{\circ}C$ ($0.42{\sim}0.44T_m$) under an applied stress range of 200~275 MPa. The stress exponent, n, was derived assuming the power law creep behavior. The surface treatment showed a decrease in a value from 9.32 (untreated) to 8.79 (treated). Also the activation energy obtained from an Arrhenius plot increased from 238 to 257 kJ/mol.

Structural transition of Ti-Cr-V alloys with hydrogenation and dehydrogenation and the improvement of their hydrogen storage properties by heat treatment (Ti-Cr-V 합금의 수소화-탈수소화에 따른 상천이 및 열처리에 의한 수소저장특성의 향상)

  • You, Jeong-Hyun;Cho, Sung-Wook;Shim, Gun-Choo;Choi, Good-Sun;Park, Choong-Nyeon;Choi, Jeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.125-132
    • /
    • 2006
  • The alloys which compositions were represented by the formula, $Ti_{(0.22+X)}Cr_{(0.28+1.5X)}V_{(0.5-2.5X)}$ ($0{\leq}X{\leq}0.12$), had the total hydrogen storage capacity higher than 3 wt% and the effective hydrogen storage capacity higher than 1.4 wt%. Particularly, among all the tested alloys, the $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy exhibited the best effective hydrogen storage capacity of 1.65 wt%. Furthermore, the reversible bcc${\leftrightarrow}$fcc structural transition was observed with hydrogenation and dehydrogenation, which predicted the possibility of pressure cycling. EDS analysis revealed micro-segregation, which suggested the necessity of microstructure homogenization by heat treatment. The $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy was selected for heat treatment and for other related studies. The results showed that the total and the effective hydrogen storage capacity increased to 3.7 wt% and 2.3 wt%, respectively. The flatness of the plateau region was also greatly improved and heat of hydride formation was determined to be approximately -36 kJ/mol $H_2$.