• Title/Summary/Keyword: Ti-Cr alloy

Search Result 193, Processing Time 0.026 seconds

DEVELOPMENT OF TITANIUM-BASED BRAZING FILLER METALS WITH LOW-MELTING-POING

  • Onzawa, Tadao;Tiyama, Takashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.539-544
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature (about 1000 C) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at 900 C or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point 825 C) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: 825 C) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of 820 C or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

Development of Titanium-based Brazing Filler Metals with Low-melting-point

  • Onzawa, T.;Iiyama, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.14-18
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature ( about $1000^{\circ}C$ ) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at $900^{\circ}C$ or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point: $825^{\circ}C$) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: $825^{\circ}C$) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of $820^{\circ}C$ or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

Plastic Behaviro of Two Phase Intermetallic Compounds Based on $Li_2$-type$(Ai, Cr)_3$/Ti ($Li_2$$(Ai, Cr)_3$/Ti기 2상 금속간화합물의 소성거동)

  • Park, Jeong-Yong;O, Myeong-Hun;Wi, Dang-Mun;Miura, S.;Mishima, Y.
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.906-914
    • /
    • 1994
  • Plastic behavior of two-phase intermetallic compounds based on $LI_{2}$-type $(Al, Cr)_3$ Ti was investigated using compression test at R.T. and 77K. $LI_{2}$ single phase alloys and two-phase alloys consisting of mainly $LI_{2}$ phase and a few or 20% second phases were selected from AI-Ti-Cr phase diagram. In general, compared with Llz single phase, two-phase alloys consisting of 20% second phase showed relatively high yield strength and poor ductility. Among the alloys, however, AI-21Ti-23Cr alloy consisting of 20% $Cr_{2}Al$ phase showed available ductility as well as high yield strength. Plastic behavior of $LI_{2}$ single phase alloys and two-phase alloys consisting of a few% $Cr_{2}Al$ was also investigated. Homogenization of arc melted ingots substantially reduced the amount of second phases but introduced extensive pore. When Cr content increased in $Ll_{2}$ single phase alloys after the homogenization, the volume fraction of pore in the alloys decreased, and no residual pore was observed in two-phase alloys consisting of a few% $Cr_{2}Al$ phase. Environmental effect on the ductility of the alloys was investigated using compression test at different strain rates($1.2 \times 10^{-4}/s$ and $1.2 \times 10^{-2}/s$). Environmental embrittlement was least significant in A1-25Ti-10Cr alloy consisting of LIZ single phase among the alloys tested in this study. However, based on the combined estimation of the pore formation, environmental embrittlement and ingot cast structure, AI-21Ti-23Cr alloy consisting of 20% $Cr_{2}Al$ as the second phase is expected to show the best tensile elongation behavior.

  • PDF

EFFECT OF COLD ROLLING ON ELECTROCHEMICAL IMPEDANCE BEHAVIOR OF NEW 𝛽-TYPE Ti-6Mo-6V-5Cr-3Sn-2.5Zr ALLOY

  • HOCHEOL SONG;AHMAD ZAKIYUDDIN;SINHYE KIM;KWANGMIN LEE
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.487-490
    • /
    • 2019
  • In this study, the corrosion properties of Ti-6Mo-6V-5Cr-3Sn-2.5Zr alloy were investigated as a function of the cold rolling ratio and annealing temperature. The annealing treatment was carried out at temperature of 680℃, 730℃, and 780℃. The highest corrosion potential observed in the specimen with a 10% rolling ratio was 179 mV, which was more positive than that of the non-rolled specimen (-0.214 Vssc). The lowest corrosion current density (1.30×10-8 A/cm2) was observed in the non-rolled specimen which suggested that the integrity of its passive oxide layer was superior to that of the cold-rolled specimens. Time-dependent EIS evaluation revealed that the consistency of the passive oxide layer was highly affected by the subjected rolling ratio over time.

Amorphous Cr-Ti Texture-inducing Layer Underlying (002) Textured bcc-Cr alloy Seed Layer for FePt-C Based Heat-assisted Magnetic Recording Media

  • Jeon, Seong-Jae;Hinata, Shintaro;Saito, Shin
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.35-39
    • /
    • 2016
  • $Cr_{100-x}Ti_x$ amorphous texture-inducing layers (TIL) were investigated to realize highly (002) oriented $L1_0$ FePt-C granular films through hetero-epitaxial growth on the (002) textured bcc-$Cr_{80}Mn_{20}$ seed layer (bcc-SL). As-deposited TILs showed the amorphous phase in Ti content of $30{\leq}x(at%){\leq}75$. Particularly, films with $40{\leq}x{\leq}60$ kept the amorphous phase against the heat treatment over $600^{\circ}C$. It was found that preference of the crystallographic texture for bcc-SLs is directly affected by the structural phase of TILs. (002) crystallographic texture was realized in bcc-SLs deposited on the amorphous TILs ($40{\leq}x{\leq}70$), whereas (110) texture was formed in bcc-SLs overlying on crystalline TILs (x < 30 and x > 70). Correlation between the angular distribution of (002) crystal orientation of bcc-SL evaluated by full width at half maximum of (002) diffraction (FWHM) and a grain diameter of bcc-SL indicated that while the development of the lateral growth for bcc-SL grain reduces FWHM, crystallization of amorphous TILs hinders FWHM. $L1_0$ FePt-C granular films were fabricated under the substrate heating process over $600^{\circ}C$ with having different FWHM of bcc-SL. Hysteresis loops showed that squareness ($M_r/M_s$) of the films increased from 0.87 to 0.95 when FWHM of bcc-SL decreased from $13.7^{\circ}$ to $3.8^{\circ}$. It is suggested that the reduction of (002) FWHM affects to the overlying MgO film as well as FePt-C granular film by means of the hetero-epitaxial growth.

Volume Expansion of TiMn2-type Hydrogen Storage Alloy with Hydrogenation (TiMn2계 수소저장합금의 수소화에 따른 부피팽창)

  • PARK, CHOONG-NYEON
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.459-464
    • /
    • 2017
  • The volume expansions of $Ti_{0.95}Zr_{0.05}V_{0.4}Mn_{1.45}Fe_{0.1}Cr_{0.05}$ alloy during hydrogenation with various conditions have been investigated. The theoretical volume expansion measured with XRD for this alloy with hydrogenation was 21%. The apparent volume expansion of this alloy ingot with hydrogenation was composed of two effects. One is a hydrogenation and the other is a pulverization. The apparent volume of free alloy powder was 1.8 times greater than that of an ingot, implying the pulverization effect on the apparent volume expansion is 80%. The apparent volume expansion of the alloy ingot with hydrogenation under a unconstrained condition was about 80 (${\pm}15$)%, much smaller than that of free alloy powder which expected as 118%. In addition, The apparent volume expansion of the alloy ingot with hydrogenation under a constrained condition(Al container) was about 50%, much smaller than that of the unconsrained. This reduced apparent volume expansion of the alloy ingot could be attributed to an arrangement of alloy powder keeping its original shape of the ingot even after hydrogenation.

The use of Thermodynamics and Phase Equilibria for Prediction of the Behavior of High Temperature Corrosion of Alloy 617 in Impure Helium Environment

  • Kim, Dong-Jin;Lee, Gyeong-Geun;Kim, Sung-Woo;Kim, Hong-Pyo
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.164-170
    • /
    • 2010
  • Thermodynamic consideration was performed for Alloy 617 exposed to an impure helium ($H_2$ 20pa, $H_2O$ 0.5pa, $CH_4$ 2pa and CO 5pa) at $950^{\circ}C$. Oxidation power was decreased in the order Al > Ti > Si > Cr > Mn. Decarburization and carburization reactions were available leading to carbon activity decrease and increase, respectively, depending on carbon and Cr activities. The thermodynamic prediction was compared with the experimental results obtained in similar conditions (($H_2$ 20pa, $H_2O$ 0.05pa, $CH_4$ 5pa and CO 2pa) and $950^{\circ}C$) by others for Alloy 617. The driving force for oxidation of Al, Ti and Si is very large to be oxidized at a given impure helium and the environment is actually carburizing towards the structural alloy, which is consistent with this work.

A Study on the Development of Porcelain Bonded Ni-Cr Dental Alloy (도재소부용 Ni-Cr 보철합금 개발에 관한 연구)

  • Lee, Gyu-Hwan;Sin, Myeong-Cheol;Choe, Bu-Byeong
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.37-46
    • /
    • 1985
  • Development of a dental Ni-Cr alloy system for porcelain veneering crown and bridge was studied in this research. The principles of alloy design were a) It should not contain toxic beryllium. b) It should have low melting Point. c) It should be easily ground and polished. d) It should possess an adequate strength to resist the deformational force In the mouth. e) It should be bondable Ivith porcelain by chemically. After investigating the effect of minor elements such as boron and rare earth metals on the mechanical properties of the Ni-Cr alloy system, the compromised ideal composition for dental use was determined. The composition was l9.6%, Cr, 5.6% Mo, 3.4% Si, 1, 0% Fe, 0.01% Ti, 0.5-1.0% B, 0.2-0.6% misch metal, balance Ni. To compare the performance of experimental alloy with commercially available alloys, the properties such as strength, melting point, and bond strength were measured. The results Ivere as follows: a) Boron increases the strength of the alloy but reduces the elongation. b) Misch metal increases the strength when the boron content is low, but does not increase the strength when boron content is high. And it reduces the elongation drastically, c) Mechanical strength of the experimental alloy was not superior to commercially available Be containing alloy, but handling performance such as castability, ease of granting and polishing, and cuttability were superior to the Be containing alloy.

  • PDF

Aging Treatment Optimization of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy for Spring Application (스프링용 Ti-3Al-8V-6Cr-4Mo-4Zr 타이타늄 합금의 시효열처리 최적화)

  • Youn, Chang-Suk;Park, Yang-Kyun;Kim, Jong-Hyung;Lee, Soo-Chang;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.6
    • /
    • pp.279-284
    • /
    • 2017
  • Mechanical properties of titanium alloy can be improved by controlling microstructure through heat treatment. In this study, Ti-3Al-8V-6Cr-4Mo-4Zr metastable beta titanium alloy, was controlled for excellent mechanical property and sound formability through various high temperature heat treatment and aging conditions and the optimum heat treatment conditions were determined. The specimens were heat-treated at $950^{\circ}C$, followed by various aging treatments from $430^{\circ}C$ to $500^{\circ}C$ for 1 to 24 h. As aging temperature and holding time increased, hardness increased by ${\beta}^{\prime}$ phase formation and precipitation of secondary ${\alpha}$ phase in ${\beta}$ matrix. However, the optimum aging temperature and holding time for mechanical properties were at $450{\sim}470^{\circ}C$ for 8~16 hr. Hardness values of the specimen aged at $450^{\circ}C$ for 8 h were found to be the highest. These results can be effectively applied to fabrication of spring with better formability and mechanical property.

Effects on the Joining Condition of TiAl Alloy and SCM440 by Servo Motor Type Friction Welding (서보모터방식 마찰용접을 이용한 TiAl 합금과 SCM440의 접합에 미치는 용접조건의 영향)

  • Park, Jong-Moon;Kim, Ki-Young;Kim, Kyoung-Kyun;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.2
    • /
    • pp.66-74
    • /
    • 2016
  • In this study, characteristics of TiAl alloy and SCM440 (Cr-Mo steel) have been investigated with the various joining condition by servo motor type friction welder. The experimental factors of friction welder used in this study are spindle revolution, friction speed, and distance, upset speed and distance, respectively. Servo motor type friction welder could be controlled by the level of oil pressure, and it could be performed by position control dependence of electrical energy. Mechanical properties and morphology of welded interface were characterized by various joining condition. This aroused due to the bond strength dependence on friction heat and size of the heat affected zone. Therefore, it is necessary to have enough friction heat and decreased heat affected zone for good friction welding between dissimilar metals. An optimum bond was obtained between TiAl alloy and SCM440 by controlling friction speed and distance. At the spindle revolution 4,000 rpm, friction speed 120 mm/min, friction distance 15 mm, the bond strength was found to be 312 MPa.