• 제목/요약/키워드: Ti-Alloy

검색결과 1,329건 처리시간 0.029초

나노 준결정상으로 강화된 Ti계 벌크 비정질기지 복합재의 제조 및 기계적 특성 고찰 (Fabrication and Mechanical Properties of Nanoquasicrystalline Phase Reinforced Ti-based Bulk Metallic Glass Matrix Composites)

  • 박진만;임가람;김태응;손성우;김도향
    • 한국주조공학회지
    • /
    • 제28권6호
    • /
    • pp.261-267
    • /
    • 2008
  • In-situ quasicrystalline icosahedral (I) phase reinforced Ti-based bulk metallic glass (BMG) matrix composites have been successfully fabricated by using two distinct thermal histories for BMG forming alloy. The BMG composite containing micron-scale Iphase has been introduced by controlling cooling rate during solidification, whereas nano-scale I-phase reinforced BMG composite has been produced by partial crystallization of BMG. For mechanical properties, micron-scale I-phase distributed BMG composite exhibited lower strength and plasticity compared to the monolithic BMG. On the other hand, nano-scale icosahedral phase embedded BMG composite showed enhanced strength and plasticity. These improved mechanical properties were attributed to the multiplication of shear bands and blocking of the shear band propagation in terms of isolation and homogeneous distribution of nanosize icosahdral phases in the glassy matrix, followed by stabilizing the mechanical and deformation instabilities.

$CaNi_{5}$ 및 MG-$CaNi_{5}$ 전극의 퇴화거동에 미치는 불화처리의 영향 (The Effect of F-treatment on the Degradation Behavior of the $CaNi_{5}$ and MG-$CaNi_{5}$ Electrodes)

  • 이창래;오세진;강성군
    • 한국재료학회지
    • /
    • 제9권6호
    • /
    • pp.622-629
    • /
    • 1999
  • Effects of the fluorination in the $K_2$TiF\ulcorner solution and in-situ KF+ KOH electrolyte on the electrochemical charge-discharge properties of CaNi\ulcorner and the Mg-CaNi\ulcorner electrodes were investigated. In-situ fluorination in the KF+ KOH electrolyte compared with pre-fluorination in the$ K_2$TiF\ulcorner solution could improve the electrochemical cycling durability of CaNi\ulcorner and MG-CaN\ulcorner electrodes. The fluorinated layer on the alloy surface by pre-fluorination to improve the activity and anti-corrosion of the electrodes was dissolved in the pure KOH electrolyte during the cycling. The fluorinated layer was formed continuously on the surface of the electrode by thee2N KF addition in the 6N KOH electrolyte. The excess F\ulcorner ion addition in KOH electrolyte could improve the electrochemical cycling durability of CaNi\ulcorner and Mg-CaNi\ulcorner electrode. But, in case of MG-CaNi\ulcorner electrode, the discharge capacity of the electrode was reduced and the poor cycling property was shown with increasing of the MG process times.

  • PDF

동합금의 가공열처리법에 의한 기계적·전기적 성질 (The Effect of Thermo-Mechanical Treatment on Mechanical and Electrical Behavior of Cu Alloys)

  • 김형석;전채홍;송건;권숙인
    • 열처리공학회지
    • /
    • 제10권1호
    • /
    • pp.20-29
    • /
    • 1997
  • Pure copper is widely used for base material for electrical and electronic parts because of its good electrical conductivity. However, it has such a low strength that various alloying elements are added to copper to increase its strength. Nevertheless, alloying elements which exist as solid solution elements in copper matrix severely reduce the electrical conductivity. The reduction of electrical conductivity can be minimized and the strengthening can be maximized by TMT(Thermo-Mechanical Treatment) in copper alloys. In this research, the effects of TMT on mechanical and electrical properties of Cu-Ni-Al-Si-P, Cu-Ni-Al-Si-P-Zr and Cu-Ni-Si-P-Ti alloys aged at various temperatures were investigated. The Cu alloy with Ti showed the hardness of Hv 225, electrical conductivity of 59.8%IACS, tensile strength of 572MPa and elongation of 6.4%.

  • PDF

Investigation of Polypyrrole Coatings Containing Nanosized Metal Oxides for Corrosion Protection of AA2024 Al Alloy

  • Fekri, F.;Shahidi, M.;Foroughi, M.M.;Kazemipour, M.
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.148-158
    • /
    • 2019
  • The corrosion protection of AA2024 PPy coated samples doping with nanosized metal oxides, including $TiO_2$ and $CeO_2$ nanoparticles and $Nd_2O_3$ nanorods, during exposure to the solutions of 0.1 M $H_2SO_4$ and 3.5% NaCl was evaluated by electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques. The nanorods of $Nd_2O_3$ were synthesized by cathodic pulse electrochemical deposition technique. The barrier properties of the different PPy coatings containing nanosized metal oxides immersed in $H_2SO_4$ solution were ranked as follows: $Nd_2O_3$ > $TiO_2$ > $CeO_2$. Therefore, the $Nd_2O_3$ coating sample provided the highest corrosion protection at any time of immersion up to 72 hours after immersing in $H_2SO_4$ solution. On the other hand, the $CeO_2$ coating sample displayed the best anticorrosive properties among the other coating samples after immersion in NaCl solution up to 28 days. This is due to the inhibition effect of cerium ions on aluminum alloys at near-neutral solutions.

Microstructural Evolution and Mechanical Properties of Ti-6Al-4V Alloy through Selective Laser Melting: Comprehensive Study on the Effect of Hot Isostatic Pressing (HIP)

  • Gargi Roy;Raj Narayan Hajra;Woo Hyeok Kim;Jongwon Lee;Sangwoo Kim;Jeoung Han Kim
    • 한국분말재료학회지
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2024
  • This study explores the profound impact of varying oxygen content on microstructural and mechanical properties in specimens HO and LO. The higher oxygen concentration in specimen HO is found to significantly influence alpha lath sizes, resulting in a size of 0.5-1 ㎛, contrasting with the 1-1.5 ㎛ size observed in specimen LO. Pore fraction, governed by oxygen concentration, is high in specimen HO, registering a value of 0.11%, whereas specimen LO exhibits a lower pore fraction (0.02%). Varied pore types in each specimen further underscore the role of oxygen concentration in shaping microstructural morphology. Despite these microstructural variations, the average hardness remains consistent at ~370 HV. This study emphasizes the pivotal role of oxygen content in influencing microstructural features, contributing to a comprehensive understanding of the intricate interplay between elemental composition and material properties.

MoS2 코팅된 치과용 임플란트의 표면특성과 생체적합성 (Surface Characteristics and Biocompatibility of MoS2-coated Dental Implant)

  • 권민기;이준식;김미은;최한철
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.72-81
    • /
    • 2024
  • The Ti-6Al-4V alloy is widely used as an implant material due to its higher fatigue strength and strengthto-weight ratio compared to pure titanium, excellent corrosion resistance, and bone-like properties that promote osseointegration. For rapid osseointegration, the adhesion between the titanium surface and cellular biomolecules is crucial because adhesion, morphology, function, and proliferation are influenced by surface characteristics. Polymeric peptides and similar coating technologies have limited effectiveness, prompting a demand for alternative materials. There is growing interest in 2D nanomaterials, such as MoS2, for good corrosion resistance and antibacterial, and bioactive properties. However, to coat MoS2 thin films onto titanium, typically a low-temperature hydrothermal synthesis method is required, resulting in the synthesis of films with a toxic 1T@2H crystalline structure. In this study, through high-temperature annealing, we transformed them into a non-toxic 2H structure. The implant coating technique proposed in this study has good corrosion resistance and biocompatibility, and antibacterial properties.

표면처리에 따른 Hastelloy X 합금의 고온물성 (High temperature properties of surface-modified Hastelloy X alloy)

  • 조현;이병우
    • 한국결정성장학회지
    • /
    • 제22권4호
    • /
    • pp.183-189
    • /
    • 2012
  • 고온 열수송용 재료로 이용되는 Hastelloy X의 표면처리에 따른 고온물성 개선에 대한 연구를 수행하였다. Hastelloy X 기판 상에 각각 PVD법인 Arc discharge 및 Sputtering을 이용하여 TiAlN 및 $Al_2O_3$ 박막을 표면 코팅(overlay coating) 하였고, 분위기 분말을 이용하여 Al을 금속표면을 통해 확산시키는 방법인 Pack cementation법을 이용한 Al 확산코팅(diffusion coating: aluminiding)법을 이용한 표면처리를 수행하였다. 이들 표면처리가 Ni-Cr계 합금의 고온열처리에서 생성되는 두꺼운 불균질 산화물($Cr_2O_3$)형성 억제에 미치는 효과와 조성 및 표면미세구조가 물성에 미치는 영향에 대해 알아보기 위해, 표면처리 된 Hastelloy X 샘플들을 공기 및 헬륨가스 분위기에서 $1000^{\circ}C$로 열처리 하였으며, 열처리된 전후 시편들에 대해 상형성, 미세구조 및 고온 물성 변화를 측정하였다. 이러한 실험결과를 통하여 표면코팅법에 의한 TiAlN 및 $Al_2O_3$ 박막에 비해 Al 확산코팅한 경우 두꺼운 불균질 산화물($Cr_2O_3$)형성이 억제되어 보다 균질한 미세구조와 높은 내마모성 등 높은 고온 안정성을 보여주는 것을 확인할 수 있었다.

Ball milling한 AB2계 금속수소화물 전극의 전기화학적 특성 (Electrochemical Properties of the AB2-type Metal Hydride Electrode Prepared by Ball Milling)

  • 최승준;심종수;오세웅;노학;최전;서찬열;박충년
    • 한국수소및신에너지학회논문집
    • /
    • 제8권4호
    • /
    • pp.181-185
    • /
    • 1997
  • The electrochemical properties of the $AB_2$-type (Zr-Ti-V-Ni-Cr-Co-Mn) metal hydride electrodes prepared by ball milling with $AB_5-type\{(LM)Ni_{3.6}Al_{0.4}Co_{0.7}Mn_{0.3}\}$(LM : Lanthanum-rich mischmetal) alloy powder as a surface activator were investigated. By ball milling with $AB_5$ type alloy powder, the activation of $AB_2$ type metal hydride electrode was accelerated resulting in an increase of discharge capacity from 35% to 85% of the maximum capacity at the first cycle. As the amount of surface activator increased the activation rate increased, whereas the discharge capacity increased with 10wt% and decreased with 20wt% addition of the surface activator. When the amount of the surface activator was kept constant as 10wt%, the discharge capacity and the activation rate increased with ball milling time up to 20 hours. However beyond 20 hours of ball milling time, they decreased drastically due to the nano-crystallization or amorphorzation of the alloy powder.

  • PDF

Development of High Entropy Alloy Film using Magnetron Sputtering

  • Kim, Young Seok;Lim, Ki Seong;Kim, Ki Buem
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.129-129
    • /
    • 2018
  • Hard coating application is effective way of cutting tool for hard-to-machine materials such as Inconel, Ti and composite materials focused on high-tech industries which are widely employed in aerospace, automobile and the medical device industry also Information Technology. In cutting tool for hard-to-machine materials, high hardness is one of necessary condition along with high temperature stability and wear resistance. In recent years, high-entropy alloys (HEAs) which consist of five or more principal elements having an equi-atomic percentage were reported by Yeh. The main features of novel HEAs reveal thermodynamically stable, high strength, corrosion resistance and wear resistance by four characteristic features called high entropy, sluggish diffusion, several-lattice distortion and cocktail effect. It can be possible to significantly extend the field of application such as cutting tool for difficult-to-machine materials in extreme conditions. Base on this understanding, surface coatings using HEAs more recently have been developed with considerable interest due to their useful properties such as high hardness and phase transformation stability of high temperature. In present study, the nanocomposite coating layers with high hardness on WC substrate are investigated using high entropy alloy target made a powder metallurgy. Among the many surface coating methods, reactive magnetron sputtering is considered to be a proper process because of homogeneity of microstructure, improvement of productivity and simplicity of independent control for several critical deposition parameters. The N2 is applied to reactive gas to make nitride system with transition metals which is much harder than only alloy systems. The acceleration voltage from 100W to 300W is controlled by direct current power with various deposition times. The coating layers are systemically investigated by structural identification (XRD), evaluation of microstructure (FE-SEM, TEM) and mechanical properties (Nano-indenter).

  • PDF

Shape memory alloy (SMA)-based head and neck immobilizer for radiotherapy

  • Lee, Hyun-Taek;Kim, Sung-In;Park, Jong Min;Kim, Ho-Jin;Song, Dae-Seob;Kim, Hyung-Il;Wu, Hong-Gyun;Ahn, Sung-Hoon
    • Journal of Computational Design and Engineering
    • /
    • 제2권3호
    • /
    • pp.176-182
    • /
    • 2015
  • Head-and-neck cancer is often treated with intensive irradiation focused on the tumor, while delivering the minimum amount of irradiation to normal cells. Since a course of radiotherapy can take 5-6 weeks or more, the repeatability of the patient posture and the fastening method during treatment are important determinants of the success of radiotherapy. Many devices have been developed to minimize positional discrepancies, but all of the commercial devices used in clinical practice are operated manually and require customized fixtures for each patient. This is inefficient and the performance of the fixture device depends on the operator's skill. Therefore, this study developed an automated head-and-neck immobilizer that can be used during radiotherapy and evaluated the positioning reproducibility in a phantom experiment. To eliminate interference caused by the magnetic field from computed tomography hardware, Ni-Ti shape-memory alloy wires were used as the actuating elements of the fixtures. The resulting positional discrepancy was less than 5 mm for all positions, which is acceptable for radiotherapy.