• Title/Summary/Keyword: Ti-Al-Fe-Si-O

Search Result 126, Processing Time 0.023 seconds

Metallography of Iron Slag Excavated from Bongsan-dong, Yeosu City in the Period of the 16th to 19th Century (여수 봉산동 출토의 사철 쇠똥에 대하여)

  • Choi, Ju;Kim, Soo Chul;Doh, Jung Man
    • Journal of Conservation Science
    • /
    • v.3 no.1 s.3
    • /
    • pp.13-18
    • /
    • 1994
  • Chemical analysis and metallographic observations of the iron slag were carried out in an attempt to estimate the old iron-making process. The slag containing $9.3\%\;TiO_2$ without Cu indicates that the ore used for smelting was sand iron, not rock ore. The phases identified in the slag were $ulv\ddot{o}spinel$, magnetite, $w\ddot{u}stite$, fayalite etc. This also supports the fact that the smelted ore was iron sand. The total amount of Fe and slag-making components$(=SiO_2+Al_2O_3+MgO+CaO)$ were $40.7\%\;and\;36.1\%$, respectively. These values were average ones found in the old slags formed in the ancient iron-making process. Assuming that $TiO_2$ in the ore combines with FeO, resulting in the formation of $ulv\ddot{o}spinel$, the estimated temperature of smelting was found to be about $1200^{\circ}C$.

  • PDF

Major, Trace and Rare Earth Element Geochemistry, and Oxygen-Isotope Systematics of Illite/smectite in the Reindeer D-27 Well, Beaufort-Mackenzie Basin, Arctic Canada (카나다 보포트-맥켄지 분지의 일라이트/스멕타이트의 원소 지화학 및 산소동위원소 연구)

  • Ko, J.;Hesse, R.;Longstaffe, F.J.
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.351-367
    • /
    • 1995
  • The elemental geochemistry and oxygen isotopes of illite/smectite (I/S) have been studied in relationship to the mineralogical trend in the Reindeer D-27 well, Beaufort-Mackenzie Basin. The increase in concentrations of $K_2O$, Rb and rare earth elements (REE), the decrease in concentrations of tetrahedral elements such as Mg, Ti, Sc, Zn and Zr, and the increase in concentrations of tetrahedral elements such as Be and V can be related to I/S compositions that vary systematically with depth. Layer formulae of S- and I-layers are estimated as $[Al_{1.57}Fe_{.19}Mg_{.31}Ti_{.07}][Si_{3.84}Al_{.16}]O_{10}(OH)_2$ and $[Al_{1.84}Mg_{.16}][Si_{3.33}Al_{.67}]O_{10}(OH)_2$, respectively. The mobilization of REE appears to occur during illitization. The increase in concentrations of REE, especially La and Ce, with depth is probably linked to incorporation of ions with high valency (e.g. $V^{5+}$) in tetrahedral sites. The excess valency due to V is partly counter-balanced by ions with low valency (e.g. $Be^{2+}$) and, in turn, the local valency deficiency caused by $Be^{2+}$ could be compensated by high-charge interlayer cations such as REE (+3). ${\delta}^{18}O$ values of I/S range from 2.91 to 15.72‰ (SMOW), and increase with depth, contrasting to trends observed in the Gulf Coast and elsewhere. The increase in ${\delta}^{18}O$ of I/S results from the rapid increase in ${\delta}^{18}O$ of pore water that overcomes the decrease in temperature-dependent fractionation values with increasing burial depth (${\delta}^{18}O_{pore\;water}>-d{\Delta}/_{I/S-water};\;d{\delta}^{18}O_{I/S}>0$). Calculated ${\delta}^{18}O$ values of pore water in equilibrium with I/S suggest that the original water was probably meteoric water. The stratification of pore water is postulated from the presence of an isotopically light interval, about 450m thick. The depth range of the isotopically light zone overlaps, but does not coincide with the interval of lowered I-content and $K_2O$ concentrations, suggesting that oxygens may have been exchanged independently of mineralogical and geochemical reactions.

  • PDF

Mineralogy and Geochemistry of Iron Hydroxides in the Stream of Abandoned Gold Mine in Kwangyang, Korea (광양 폐금광 수계에 형성된 철수산화물에 대한 광물학적 및 지구화학적 특성)

  • Park, Cheon-Young;Jeoung, Yeon-Joong;Kim, Seoung-Ku
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.208-222
    • /
    • 2001
  • Geochemical investigations on suspended amorphous iron oxide material from the Kwangyang gold mine and its surrounding area, Cheonnam, Korea have been carried out. The sediments samples were collected from 11 location along Kwangyang mine area and were air dried and sieved to -80 mesh. These samples consist mainly of iron, silicon and alumina. The Fe$_2$O$_3$ contents ranges from 17.9 wt.% to 72.3 wt.%. The content of Fe$_2$O$_3$ increase with decreasing Si, Al, Mg, Na, K, Mn, and Ti, whereas the contents of Te, Au, Ga, Bi, Cd, Hg, Sb, and Se increase in the amorphous stream sediments. Amorphous stream sediments have been severely enriched for As (up to 54.9 ppm), Bi (up to 3.77 ppm), Cd (up to 3.65 ppm), Hg (up to 64 ppm), Sb (up to 10.1 ppm), Cu (up to 37.1 ppm), Mo (up to 8.86 ppm), Pb (up to 9.45 ppm) and Zn (up to 29.7 ppm). At the upstream site, the Au content (up to 4.4 ppm) in the amorphous stream sediments are relatively high but those contents decrease with distance of mine location. The content of Ag (up to 0.24 ppm) were low in upstream site but those contents increase significantly in the downstream sites. The X-ray diffraction patterns of the samples have virtually no sharp and discrete peaks, indicating that some samples are amorphous or poorly-ordered. The quartz, goethite, kaolinite and illite were associated in amorphous stream sediments. The infrared spectra for amorphous stream sediments show major absorption bands due to OH stretching, adsorbed molecular water, sulfate and Fe-O stretching, respectively.

  • PDF

A Study on Dancheong Pigments of Old Wooden Building in Gwangju and Jeonnam, Korea (광주.전남지역 목조 고건축물에 사용된 단청안료에 대한 연구)

  • Jang, Seong-Wook;Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.269-278
    • /
    • 2010
  • We investigated characteristics of the coloring material of Dancheong pigments and hope that this study contributes the revival of traditional Dancheong pigments color. For this purpose, we collected Dancheong fragment samples that fell off naturally from old wooden buildings in Gwangju and Jeonnam and analyzed the natural coloring material by XRD and EDS-SEM analysis method. In white pigments of Dancheong fragments, it is confirmed that gypsum$(CaSO_{4}{\cdot}2H_{2}O)$, quartz$(SiO_{2})$, white lead$(PbCO_{3})$ and calcite$(CaCO_{3})$ which have been used for white pigments since ancient times and $TiO_{2}$ which is common used in modern times. In red pigments of Dancheong fragments, it is confirmed that hematite$(Fe_{2}O_{3})$ and red lead$(Pb_{3}O_{4})$, which have been used for red pigments since ancient times and C.I. pigment orange $13(C_{32}H_{24}C_{12}N_{8}O_{2})$ but there is no cinnabar(HgS) which has been used since B.C. 3000 in China. In yellow pigments of Dancheong fragments, it is confirmed that crocoite$(PbCrO_{4})$ and massicot(PbO). In blue pigments of Dancheong fragments, it is confirmed that sodalite$(Na_{4}BeAlSi_{4}O_{12}Cl)$ and nosean $(Na_{8}Al_{6}Si_{6}O_{24}SO_{4})$ as coloring material of blue pigment and C.I. pigments blue $29(Na_{7}Al_{6}Si_{6}O_{24}S_{3})$ which is used in modern times. In green pigments of Dancheong fragments, it is confirmed that calumetite$(Cu(OHCI)_{2}{\cdot}2H_{2}O)$, escolaite(Cr2O3), dichromium trioxide$(Cr_{2}O_{3})$, emerald green$(C_{2}H_{3}As_{3}Cu_{2}O_{8})$, and C.I. pigments green$(C_{32}H_{16}-XCl_{x}Cu_{8})$ which is used in modern time. In black pigments of Dancheong fragments, Chiness ink(carbon black) is confirmed.

Geochemical Characteristics of A-type granite in Dongcheondong, Gyeongju (경주 동천동 일대에 분포하는 A-형 화강암의 지화학적 특성)

  • Myeong, Bora;Ju, Jiwon;Kim, Junghoon;Jang, Yundeuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.271-280
    • /
    • 2017
  • The Dongcheondong granite is alkali feldspar granite in Dongcheondong, Gyeongju. The granite is coarse grained and consists of alkali feldspar, quartz, amphibole, and biotite. Alkali feldspar is perthitic orthoclase and quartz often shows undulatory extinction. Plagioclase often shows albite twins, and biotite and amphibole emplace as interstitial minerals. The Dongcheondong granite is plotted in A-type area having high ($Na_2O+K_2O)/Al_2O_3$ and low (MgO+CaO)/FeOT ratio. The Dongcheondong A-type granite has higher $SiO_2$, $Na_2O$, $K_2O$, Zr, Y, and REE contents (except for Eu) and lower $TiO_2$, $Al_2O_3$, CaO, MgO, Sr, Ba, and Eu contents than I-type granites in Gyeongsang Basin. These results show that the geochemical characteristics of the Dongcheondong A-type granite are distinguished from I-type granite in Gyeongsang Basin. A-type granite in the Dongcheondong is thought to has been generated by partial melting of I-type tonalite or granodiorite.

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

Chemistry of Talc Ores in Relation to the Mineral Assemblages in the Yesan-Gongju-Cheongyang Area, Korea (충남 예산-공주-청양 지역 활석광석의 광물조합에 따른 화학적 특징)

  • 김건영;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.60-73
    • /
    • 1997
  • The talc of the Daeheung, Pyeongan, and Cheongdang (Shinyang) talc deposits in the Yesan-Gongju-Cheongyang area is a hydrothermal alteration product of serpentinite originated from ultramafic rocks. The mineral assemblages in alteration zones are: serpentine, serpentine-talc, talc, talc-chlorite, talc-phlogopite-chlorite, and talc-tremolite-chlorite. Chemical distributions in both the Al2O3-FeO-MgO system and the immobile elements suggest that the serpentine-talc and talc rocks are the reaction product of ultramafic rocks and silicic hydrothermal solution without addition of other granitic components, whereas chlorite-, phlogopite-, and tremolite-bearing rocks are the metasomatic alteration product of serpentinite by hydrothermal solution affected by granitic gneiss. Discontinuities in the immobile element ratios of mineral assemblages are due to changes in their mineralogy. The relative contents of Al2O3, TiO2, Zr in the talc-phlogopite-chlorite and talc-tremolite-chlorite rocks increase irregularly with increasing phlogopite, tremolite, and/or chlorite contents in contrast to other ore types. But the relative contents of Cr, Ni, and Co are uniform in all the mineral assemblages. Chemistry of each mineral assemblage formed by steatitization of serpentinite suggests that Cr, Co, Ni, MgO, and Fe2O3 are relatively immobile during the alteration, whereas SiO2, Al2O3, CaO, and K2O are highly increased. The contents of chlorite, phlogopite, and tremolite in each mineral assemblage might be controlled by addition of Al2O3, K2O, and CaO, respectively. The high contents of other elements than immobile elements in the altered rocks as compared with unaltered rocks indicate that a large amount of elements were introduced from hydrothermal solution up to about 8∼41% in total mass showing maximum value in the talc-phlogopite-chlorite rock.

  • PDF

Petrology of the Basalt of Kilauea Volcano, Hawaii (하와이 킬라우에아 화산 현무암에 대한 암석학적 연구)

  • Park, Byeong-Jun;Jang, Yun-Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.2 s.48
    • /
    • pp.59-72
    • /
    • 2007
  • Kilauea volcano located in the southern part of Hawaii island chains has been formed by continuous and sporadic eruption activities from 16 century to September of 1982. Kilauea volcano was investigated from collecting the samples of basalt to identify the geochemical characteristics of the lavas. Olivine, clinopyroxene, plagioclase, and opaque minerals with glass groundmass are observed. Clinopyroxene formed glomerophopyritic texture with plagioclase and zoning texture was observed in some of plagioclase phenocrysts. Major elements such as $K_2O$, $P_2O_5$, $TiO_2$ increased with respect to MgO. $Al_2O_3$ and CaO show the kink on Marker diagram due to the crystal fractionation of plagioclase and clinopyroxene with plagioclase respectively. Olivine has a wide range of Fo% ranging from 60 to 90, and MnO and FeO in the olivine are decreased with increasing Fo% oppositely increased $SiO_2$, MgO, and NiO. Ni in the whole rock is controlled not only by the mode of olivine but also by the Ni abondance in the olivine.

Analysis of Surface Contaminants and Deterioration Degree on the Seated Stone Statue of Buddhist Master Seungga at Seunggasa Temple in Seoul, Korea (승가사 석조승가대사좌상의 손상도 및 표면오염물 분석)

  • Kim, Sung Han;Lee, Chan Hee;Naruto, Araki
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.497-508
    • /
    • 2017
  • This study was carried out to document and diagnose the conditions of the seated stone statue of Buddhist Master Seungga in Seunggasa temple immediately after its conservation treatment, which was found to be long covered in surface of white materials. The stone Halo was researched along with the Statue, and basic data was secured through precisely examination and nondestructive diagnosis. The result from the surface deterioration evaluation shows that both the Statue and Halo had a little bit of physical deterioration, although their level of chemical deterioration was proportionally higher due to discoloration. The physical property diagnosis using ultrasonic measurements on the Statue and Halo showed that the average ultrasonic velocity was found to be 3,570 m/s and 3,373 m/s, respectively, which corresponds to grade III, an indication of a favorable physical property. The surface covered materials were detected to be Ca, Ti, Pb, Fe, Al and Si, emanating from Hobun (Oster shell powder; $CaCO_3$) or lime ($CaO{\cdot}Ca(OH)_2$) and silicate minerals. Furthermore, Ti and Pb seems to be the component of the white coloring pigments, titanium white ($TiO_2$) and white lead ($2PbCO_2{\cdot}Pb(OH)_2$). Therefore, the seated stone statue of Buddhist Master Seungga is presumed to be painted with Hobun or lime and thereafter painted over with titanium white and white lead.

Banded and Massive Iron Mineralization in Chungju Mine(I): Geology and Ore Petrography of Iron Ore Deposits (충주지역 호상 및 괴상 철광상의 성인에 관한 연구(I) : 지질 및 광석의 산출특성)

  • Kim, Gun-Soo;Park, Maeng-Eon;Enjoji, Mamoru
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.523-535
    • /
    • 1994
  • The strata-bound type iron ore bodies in the Chungju mine are interbedded with metamorphic rocks which are intruded by Mesozoic granitic rocks. The iron ore deposit occurs as layer or lens shape which are concordant with the metamorphic rocks. The iron ore is classified into banded and massive types based on the mode of texture and occurrence. Grain size and iron-oxides tend to become coarser toward massive ore than banded ore. Banded ores commonly contain internal layers defined by alternating magnetite- rich, hematite-rich, magnetite-hematite, and quartz-rich mesobands. The banded iron ore consists of hematite, magnetite, quartz, feldspar, and minor amounts of biotite, muscovite, chlorite, carbonates, epidote, allanite, and zircon. Massive ores which are characterized by high magnetite content occur in contact of granitic rocks. The massive iron ores consist mostly of magnetite and quartz, with minor amounts of hematite, pyrite, microcline, biotite, muscovite, chlorite, carbonates, epidote, allanite and zircon. Magnetite from banded and massive ores is almost pure $Fe_3O_4$ in composition, including 0.14 to 0.27 wt.% MnO and 0.10 to 0.15 wt.% MnO, respectively. Hematite of the ore contains 0.87 to 1.27 wt.% $TiO_2$ in banded ore and 3.44 to 6.96 wt.% $TiO_2$ in massive ore, respectively. Biotite shows a little compositional variation depending on ore types. Biotite of the banded ore has lower FeO, $TiO_2$ and $Al_2O_3$, and higher MgO and $SiO_2$ than the massive ore. The modes of occurrence and petrography of ore implies that massive ores might have been formed either under more reducing environments or higher temperature condition than banded ore. Banded ores might represent early episode of iron enrichment due to regional metamorphism. Massive ores might be related to the contact metamorphism resulting from late granitic intrusion.

  • PDF