DOI QR코드

DOI QR Code

Geochemical Characteristics of A-type granite in Dongcheondong, Gyeongju

경주 동천동 일대에 분포하는 A-형 화강암의 지화학적 특성

  • Myeong, Bora (Department of Geology, Kyungpook National University) ;
  • Ju, Jiwon (Department of Geology, Kyungpook National University) ;
  • Kim, Junghoon (Division of Environment Policy, Gyeongsangbuk-Do) ;
  • Jang, Yundeuk (Department of Geology, Kyungpook National University)
  • Received : 2017.06.27
  • Accepted : 2017.08.10
  • Published : 2017.09.30

Abstract

The Dongcheondong granite is alkali feldspar granite in Dongcheondong, Gyeongju. The granite is coarse grained and consists of alkali feldspar, quartz, amphibole, and biotite. Alkali feldspar is perthitic orthoclase and quartz often shows undulatory extinction. Plagioclase often shows albite twins, and biotite and amphibole emplace as interstitial minerals. The Dongcheondong granite is plotted in A-type area having high ($Na_2O+K_2O)/Al_2O_3$ and low (MgO+CaO)/FeOT ratio. The Dongcheondong A-type granite has higher $SiO_2$, $Na_2O$, $K_2O$, Zr, Y, and REE contents (except for Eu) and lower $TiO_2$, $Al_2O_3$, CaO, MgO, Sr, Ba, and Eu contents than I-type granites in Gyeongsang Basin. These results show that the geochemical characteristics of the Dongcheondong A-type granite are distinguished from I-type granite in Gyeongsang Basin. A-type granite in the Dongcheondong is thought to has been generated by partial melting of I-type tonalite or granodiorite.

동천동 화강암은 경주 동천동 일대에 분포하는 알칼리장석화강암이다. 이는 주로 우백질의 조립질화강암이며 알칼리장석, 석영, 흑운모, 각섬석이 관찰된다. 경하관찰 결과, 알칼리장석은 퍼싸이트로 나타나며, 석영은 주로 파동소광을 보인다. 사장석은 주로 알바이트 쌍정을 보이며, 흑운모와 각섬석은 간극상으로 산출된다. 동천동 화강암은 $(Na_2O+K_2O)/Al_2O_3$ 비가 높고 (MgO+CaO)/FeOT가 낮은 전형적인 A-형 화강암 영역에 도시되며 경상분지 I-형 화강암류에 비해 $SiO_2$, $Na_2O$, $K_2O$, Rb, Ga, Zr이 부화되어 있는 반면 $TiO_2$, $Al_2O_3$, CaO, MgO, Sr, Ba, Sc 등은 결여되어 있다. 또한, 연구지역 화강암은 I-형 화강암에 비해 희토류원소의 함량이 높고 큰 Eu(-) 이상을 보여준다. 이러한 지화학적 특성은 기존에 보고된 경상분지 I-형 화강암류와 뚜렷이 구분된다. 동천동 A-형 화강암은 현재까지 제시된 A-형 화강암의 기원 중 지각 내의 토날라이트질(Tonalite) 내지 화강섬록암의 I-형 화강암의 부분용융으로 만들어졌을 가능성이 높은 것으로 판단된다.

Keywords

References

  1. Anderson, I.-C., Frost, C.-D., and Frost, B.-R., 2003, Petrogenesis of the Red Mountain pluton, Laramie anorthosite complex, Wyoming: implications for the origin of A-type granite. Precambrian Res, 124, 243-267. https://doi.org/10.1016/S0301-9268(03)00088-3
  2. Anderson, J.-L., 1983, Proterozoic anorogenic granite plutonism of North America. Geological Society of America Memoirs, 161, 133-154.
  3. Chappell, B. and White, A. 1974, Two contrasting granite types. Pacific geology, 8, 173-174.
  4. Collins, W. Beams, S. White, A. and Chappell, B. 1982, Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to mineralogy and petrology, 80, 189-200. https://doi.org/10.1007/BF00374895
  5. Creaser, R.-A., Price, R.-C., and Wormald, R.-J., 1991, Atype granites revisited: assessment of a residual-source model. Geology, 19, 163-166. https://doi.org/10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
  6. Douce, A.-E., 1997, Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25, 743-746. https://doi.org/10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
  7. Hong, Y.-K., 1987, Geochemical characteristics of Precambrian, Jurassic and Cretaceous granites in Korea. Journal of Korean Institute of Mining Geology, 20, 35-60.
  8. Hwang, B.-H., McWilliams, M. Son, M. and Yang, K. 2007, Tectonic implication of A-type granites across the Yangsan fault, Gigye and Gyeongju areas, southeast Korean Peninsula. International Geology Review, 49, 1094-1102. https://doi.org/10.2747/0020-6814.49.12.1094
  9. Hwang, B.-H., Lee, J.-D., and Yang, K.-H., 2004, Petrological study of the granitic rocks around the Yangsan Fault: Lateral Displacement of the Yangsan Fault. Journal of the Geological Society of Korea, 40, 161-178.
  10. Irvine, T.-N., and Baragar, W.-R., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8, 523-548. https://doi.org/10.1139/e71-055
  11. Jin, M.-S., 1980, Geological and isotopic contrasts of the Jurassic and the Cretaceous granites in South Korea. Journal of the Geological Society of Korea. 16, 205-215.
  12. Jin, M.-S., 1988, Geochemistry of the Cretaceous to early Tertiary granitic rocks in southern Korea: Pt. II trace elements geochemistry. Journal of the Geological Society of Korea, 24, 168-188.
  13. Jo, D.-L., 1993, Mineralogy and geochemical Study for Origin of Phanerozoic Granitoids in South Korea. Ph.D. dissertation, University of Yonsei, 189p.
  14. Kim, K.-H., 1992, Geochemical Study of Some Mesozoic Granitic Rocks in South Korea. Journal of the Korean Institute of Mining Geology, 25, 435-446
  15. King, P.-L., White, A.-J., Chappell, B.-W., and Allen, C. M., 1997, Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38, 371-391. https://doi.org/10.1093/petroj/38.3.371
  16. Koh, J.-S., Yun, S.-H., and Lee, S.-W., 1996, Petrology and geochemical characteristics of A-type granite with particular reference to the Namsan Granite, Kyeongju. Journal of the Petrological Society of Korea, 5, 142-160.
  17. Lee, J.-D., and Hwang, B.-H., 1999, Petrology of the granitoids in the Namsan-Tohamsan area around Gyeongju, Korea. Journal of Korean Earth Science Society, 20, 80-95.
  18. Lee, J.-D., 2000, Petrology of the granitoids in the Gyeongju-Gampo area. Journal of Korean Earth Science Society, 9, 70-83.
  19. Loiselle, M. and Wones, D. 1979, Mineralogy and geochemical Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs, 468.
  20. Mason, B. and Moore, C. B., 1985, Principles of Geochemistry. New York, Wiley, 340p.
  21. Mushkin, A. Navon, O. Halicz, L. Hartmann, G. and Stein, M. 2003, The petrogenesis of A-type magmas from the Amram Massif, southern Israel. Journal of Petrology, 44, 815-832. https://doi.org/10.1093/petrology/44.5.815
  22. Park, S.-C., Moon, S.-W., Kim, S.-D., and Jwa, Y.-J., 2015, A Petrological Study of Stones Used in the Three Storied Stone Pagoda of Bulguksa Temple. Journal of Petrological Society, 24, 11-24. https://doi.org/10.7854/JPSK.2015.24.1.11
  23. Pearce, J.-A., Harris, N.-B., and Tindle, A.-G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
  24. Ringwood, A.-E., 1955, The principles governing trace element distribution during magmatic crystallization Part I: The influence of electronegativity. Geochimica et Cosmochimica Acta, 7, 189-202. https://doi.org/10.1016/0016-7037(55)90029-6
  25. Skjerlie, K.-P., and Johnston, A.-D., 1992, Vapor-absent melting at 10 kbar of a biotite-and amphibole-bearing tonalitic gneiss: implications for the generation of A-type granites. Geology, 20, 263-266. https://doi.org/10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2
  26. Takahashi, M. 1985, A proposal and development of granitoid series concept. The Memoirs of the Geological Society of Japan, 25, 225-244.
  27. Tsusue, A. and Ishihara, S. 1974, The iron-titanium oxides in the granitic rocks of Southwest Japan. Mining Geology, 123, 13-30.
  28. Turner, S.-P., Foden, J.-D., and Morrison, R.-S., 1992, Derivation of Some a-Type Magmas by Fractionation of Basaltic Magma-an Example from the Padthaway Ridge, South Australia. Lithos, 28, 151-179. https://doi.org/10.1016/0024-4937(92)90029-X
  29. Whalen, J.-B., Currie, K.-L., and Chappell, B.-W., 1987, A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to mineralogy and petrology, 95, 407-419. https://doi.org/10.1007/BF00402202
  30. White, A.-J., and Chappell, B.-W., 1977, Ultrametamorphism and granitoid genesis. Tectonophysics, 43, 7-22. https://doi.org/10.1016/0040-1951(77)90003-8
  31. White, A.-J., 1979, Sources of granite magmas(abstract). Geological Society of America Abstracts with Programs, 539.