• Title/Summary/Keyword: Ti-6Al-4V alloy

Search Result 312, Processing Time 0.033 seconds

Optimal Condition of Hydroxyapatite Powder Plasma Spray on Ti6Al4V Alloy for Implant Applications

  • Ahn, Hyo-Sok;Lee, Yong-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.211-214
    • /
    • 2012
  • Optimal conditions for HA plasma spray-coating on Ti6Al4V alloy were investigated in order to obtain enhanced bone-bonding ability with Ti6Al4V alloy. The properties of plasma spray coated film were analyzed by SEM, XRD, surface roughness measurement, and adhesion strength test because the film's transformed phase and crystallinity were known to be influential to bone-bonding ability withTi6Al4V alloy. The films were formed by a plasma spray coating technique with various combinations of plasma power, spray distance, and auxiliary He gas pressure. The film properties were analyzed in order to determine the optimal spray coating parameters with which we will able to achieve enhanced bone-bonding ability with Ti6Al4V alloy. The most influential coating parameter was found to be the plasma spray distance to the specimen from the spray gun nozzle. Additionally, it was observed that a relatively higher film crystallinity can be obtained with lower auxiliary gas pressure. Moderate adhesion strength can be achievable at minimal plasma power. That is, adhesion strength is minimally dependent on the plasma power. The combination of shorter spray distance, lower auxiliary gas pressure, and moderate spray power can be recommended as the optimal spray conditions. In this study, optimal plasma spray coated films were formed with spray distance of 70 mm, plasma current of 800 A, and auxiliary gas pressure of 60 psi.

A Study on the Effect of Back Pressure on the Superplastic Bulge Forming of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 초소성 벌지성형에 미치는 배압력의 영향)

  • 송유준;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.175-178
    • /
    • 1997
  • A modified Mukerjee's model considering the microstructural evolution was developed to study the superplastic bulge forming process of Ti-6Al-4V alloy. Through the microstructual observation after deformation, it was found that the grain growth rate of uniaxially tested specimens was different from that of biaxially deformed specimens. From this result, bulge forming experiments with and without back pressure were performed to examine the grain growth behavior and to compare the results of biaxial test with those of triaxial test. Good agreement between the prediction by a modified Mukerjee's model and the experimental measurements was obtained for bulge profile and thickness distribution.

  • PDF

Consolidation Behavior of Ti-6Al-4V Powder by Spark Plasma Sintering (Spark plasma sintering에 의한 Ti-6Al-4V 합금분말의 성형성)

  • Kim, J.H.;Lee, J.K.;Kim, T.S.
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.32-37
    • /
    • 2007
  • Using spark plasma sintering process (SPS), Ti-6Al-4V alloy powders were successfully consolidated without any contamination happened due to reaction between the alloy powders and graphite mold. Variation of microstructure and mechanical properties were investigated as a function of SPS temperature and time. Compared with hot isostatic pressing (HIP), the sintering time and temperature could be lowered to be 10 min. and $900^{\circ}C$, respectively. At the SPS condition, UTS and elongation were about 890 MPa and 24%, respectively. Considering the density of 98.5% and elongation of 24%, further improving the tensile strength would obtain by increasing the SPS pressure.

The Heat Treatment Characteristics of Hydroxyapatite Thin Films Deposited by RF Sputtering (RF 스퍼터링으로 증착된 하이드록시아파타이트 박막의 열처리 특성)

  • Jung, Chan-Hoi;Lee, Jun-Hee;Shin, Youn-Hak;Kim, Myung-Han;Choi, Sock-Hwan;Kim, Seung-Eon
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.218-224
    • /
    • 2006
  • RF sputtering process was applied to produce thin hydroxyapatite(HAp) films on Ti-6Al-4V alloy substrates. The effects of different heat treatment conditions on the hardness between HAp thin films and Ti-6Al-4V alloy substrates were studied. Before deposition, the Ti-6Al-4V alloy substrates were heat treated for 1h at $850^{\circ}C\;under\;3.0{\times}10^{-3}torr$, and after deposition, the HAp thin films were heat treated for 1h at $400^{\circ}C,\;600^{\circ}C\;and\;800^{\circ}C$ under the atmosphere, and analyzed FESEM-EDX, FTIR, XRD, nano-indentor, micro-vickers hardness, respectively. Experimental results represented that the surface defects of thin films decreased by relaxation of internal stress and control of substrate structure followed by heat treatment of substrates before the deposition, and the HAp thin films on the heat-treated substrates had higher hardness than none heattreated substrates before the deposition, and the hardness properties of HAp thin films and Ti-6Al-4V alloy substrates appeared independent behavior, and the hardness of HAp thin films decreased by formation of $VTiO_3(OH),\;{\theta}-Al_{0.32}V_2O_5,\;Al_{0.33}V_2O_5$.

The Fretting Fatigue Behavior of Ti-6Al-4V Alloy on Change of Microstructure (Ti-6Al-4V 합금의 조직 변화에 따른 프레팅 피로거동)

  • Bae Yong Tak;Choi Sung long;Kwon Jae Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.584-590
    • /
    • 2005
  • The effect of microstructure on mechanical behavior for Ti-6Al-4V alloy was studied. Two different kinds of specimens are prepared using heat treatments (rolled plate, $1050^{\circ}C)$ in order to Produce different microstructures. Various kinds of mechanical tests such as hardness, tensile, fatigue and fretting fatigue tests are performed for evaluation of mechanical properties with the changes of microstructures. Through these tests, the following conclusions are observed: 1) Microstructures are observed as equiaxed and $widmanst{\ddot{a}}ten$ microstructures respectively. 2) Impact absorbed energy is superior for the equiaxed microstructure, and the hardness and tensile strength are superior for the $widmanst{\ddot{a}}ten$ microstructure. 3) The fatigue endurance of $widmanst{\ddot{a}}ten$ microstritcture shows higher value than that of the equiaxed microstructure. 4) The fatigue endurance in fretting condition was reduced about $50{\%}$ from that of the non-fretting condition.

Microstructural Evolution during the Equal Channel Angular Pressing of Ti-6Al-4V Alloy (Ti-6AI-4V 합금의 ECAP 가공에 따른 미세조직의 변화)

  • 고영건;정원식;신동혁;이종수
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.519-528
    • /
    • 2002
  • The microstructural evolution during the equal channel angular pressing of Ti-6Al-4V alloy was investigated using the transmission electron microscopy (TEM). ECA pressing was carried out isothermally with route C at $600^{\circ}C$ for two types of initial microstructure, i.e., equiaxed and Widmanstatten microstructures. At an initial stage of ECA pressing, the equiaxed microstructure showed more uniform flow than the Widmanstatten microstructure. However, both microstructures were significantly refined revealing nearly equiaxed grains of 0.3$mu extrm{m}$ in diameter with high angle grain boundaries after 4 passes of ECA pressing. These ultrafine gains were found to be stable with little grain growth, when annealed up to $600^{\circ}C$ for 1hr.

Nanotubular Structure Formation on Ti-6Al-4V and Ti-Ta Alloy Surfaces by Electrochemical Methods

  • Lee, Kang;Choe, Han-Cheol;Ko, Yeong-Mu;Brantley, W.A.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.164-170
    • /
    • 2012
  • Nanotubular structure formation on the Ti-6Al-4V and Ti-Ta alloy surfaces by electrochemical methods has been studied using the anodizing method. A nanotube layer was formed on Ti alloys in 1.0 M $H_3PO_4$ electrolyte with small additions of $F^-$ ions. The nanotube nucleation and growth of the ${\alpha}$-phase and ${\beta}$-phase appeared differently, and showed different morphology for Cp-Ti, Ti-6Al-4V and Ti-Ta alloys. In the ${\alpha}$-phase of Cp-Ti and martensite ${\alpha}^{\prime}$ and in the ${\alpha}^{{\prime}{\prime}}$ and ${\beta}$-phase of the Ti-Ta alloy, the nanotube showed a clearly highly ordered $TiO_2$ layer. In the case of the Ti-Ta alloy, the pore size of the nanotube was smaller than that of the Cp-Ti due to the ${\beta}$-stabilizing Ta element. In the case of the Ti-6Al-4V alloy, the ${\alpha}$-phase showed a stable porous structure; the ${\beta}$-phase was dissolved entirely. The nanotube with two-size scale and high order showed itself on Ti-Ta alloys with increasing Ta content.

Plastic deformation characteristic of titanium alloy sheet (Ti-6Al-4V) at elevated temperature (티타늄 합금판재(Ti-6Al-4V)의 고온 소성면형특성(1))

  • Park, J.G.;Kim, J.H.;Park, N.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.158-163
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. However, due to the low formability and large spring back at room temperature, titanium alloy sheets were usually formed by slow forming or hot forming with heating die and specimen. In the sheet metal forming area, FE simulation technique to optimize forming process is widely used. To achieve high accuracy FE simulation results, Identification of material properties and deformation characteristic such as yield function are very important. In this study, uniaxial tensile and biaxial tensile test of Ti-6Al-4V alloy sheet with thickness of 1.0mm were performed at elevated temperature of 873k. Biaxial tensile tests with cruciform specimen were performed until the specimen was breakdown to characterize the yield locus of Ti-6Al-4V alloy sheet. The experimental results for yield locus are compared with the theoretical predictions based on Von Mises, Hill, Logan-Hosford, and Balat's model. Among these Logan-Hosford's yield criterion well predicts the experimental results.

  • PDF

Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Processed by Metal Injection Molding (금속분말 사출성형된 Ti-6Al-4V 합금의 미세조직 및 기계적 물성)

  • Kim, M.J.;Baek, S.H.;Yoon, D.K.;Lee, E.H.;Kim, J.H.;Ko, Y.G.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.251-256
    • /
    • 2020
  • The purpose of this study is to investigate the effect of sintering condition on the microstructure evolution and tensile properties of the Ti-6Al-4V alloy sample processed by metal injection molding (MIM) in terms of the sizes of the alpha morphology and pore found in the matrix. For this purpose, a series of MIM were conducted on this sample at various sintering temperatures ranging from 1173 to 1373 K for three hours followed by furnace cooling, observed by the scanning electron microscopy. The microstructures sintered in this study showed that, with increasing sintering temperature over beta transus temperature, the transformation of the equiaxed alpha into transformed beta was attained while the size of pores would tend to decrease. Thus, the strength remained unchanged significantly in the tension while ductility increased to some extent as sintering temperature increased. Such mechanical behavior would be explained in relation to the microstructure evolution of the Ti-6Al-4V sample via the MIM.