• Title/Summary/Keyword: Ti-6Al-4V Titanium

Search Result 185, Processing Time 0.028 seconds

Effect of Fe Content on Mechanical and Electrochemical Properties of Ti-Mo-Fe Alloys (Ti-Mo-Fe 합금의 Fe 함량에 따른 기계적 특성과 전기화학적 특성 비교·분석)

  • Ji-Won Kim;Jeong-Yeon Park;Min Gang;Ji-Hwan Park;Dong-Geun Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.145-152
    • /
    • 2023
  • β titanium alloys containing β stabilizing elements such as V, Nb, Ta, Mo and Fe are widely used etc, due to their excellent specific strength, corrosion resistance, fatigue strength and easy formability. New metastable β titanium alloys are developed containing low-cost elements (Mo and Fe) in this study. Fe element is a strong β-stabilizer which can affect the mechanical and electrochemical properties of Ti-5Mo-xFe (x = 1, 4 wt%) alloys. These properties were analyzed in connection with microstructure and phase distribution. Ti-5Mo-4Fe alloy showed higher compression yield stress and maximum stress than Ti-5Mo-1Fe alloy due to solid-solution hardening and grain refinement hardening effect. As Fe element increased, Fe oxide formation and reduction of ${\bar{Bo}}$ (bond order) value affect the decrease of corrosion resistance. Ti-5Mo-xFe alloys were more excellent than Ti-6Al-4V ELI alloy.

Quasi-Static and Dynamic Loading Responses of Ti-6Al-4V Titanium Alloy: Experiments and Constitutive Modeling

  • Suh, Yeong-Sung;Akhtar S. Khan
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.191-194
    • /
    • 2003
  • The results from a systematic study of the response of a Ti-6Al-4V alloy under quasi-static and dynamic loading at different strain rates and temperatures are presented. It has been shown that the work-hardening rate decreased as the strain rate and the strain increased. The correlations and predictions using modified KHL (Khan-Huang-Liang) viscoplastic constitutive model are compared with those from JC (Johnson-Cook) model and experimental observations. Overall, KHL model correlations and predictions compared much more favorably than the corresponding JC model predictions and correlations.

  • PDF

Machining Characteristics of Ti-6Al-4V Titainum Alloy (Ti-6Al-4V 타이타늄 합금의 선삭특성)

  • 홍우표;김형철;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.818-822
    • /
    • 2000
  • The low density, sustained high temperature strength and excellent resistivity to acid materials have made them strong candidate materials for future aerospace or medical applications. Nowadays their usage has already been broaden to everyday's commercial applications such as golf club heads, finger rings and many decorative items, Anticipating the general use of this material and development of the titanium alloys in domestic furnaces, the review and the study of the machining parameters for those alloys are deemed necessary. The present studies are concentrated to the machining parameters of the Ti-6Al-4V alloys due to their dominant position in the production of titanium alloys.

  • PDF

A STUDY ON THE RESISTANCE OF WEAR AND CYTOTOXICITY OF THE TITANIUM SURFACE AFTER FILM DEPOSITIONS (박막증착시 티타늄 표면의 마손저항도와 세포독성에 관한 연구)

  • Kim Hyung-Woo;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.84-95
    • /
    • 2001
  • Titanium is widely used in dentistry for its low density, high strength, fatigue resistance, corrosion resistance, and biocompatibility. But it has a tendency of surface damage under circumstance of friction and impact for its low hardness of the surface. Coating is one of methods fir increasing surface hardness. Its effect is to improve surface physical characteristics without change of titanium. Diamond-like carbon and titanium nitride are known for its high hardness of the surface. So that this study was aimed at the wear test and the cytotoxicity test of the commercially pure titanium and Ti-6Al-4V alloy which were deposited by diamond-like carbon film or titanium nitride film to acertain improvement of the surface hardness and the biocompatibility. A disk (25mm diameter, 2mm thickness) was made of commercially pure titanium and Ti-6Al-4V alloy and these substrates were deposited by diamond-like carbon film or titanium nitride film. Diamond-like carbon film was deposited by the method of radiofrequency plasma assisted chemical vapor deposition and titanium nitride film was deposited by the method of reactive arc ion plating. Then these substrates were tested about wear characteristics by the pin-on-disk type wear tester in which ruby ball was used as a wear causer under the load of 32N, The fracture cycles were measured by rotating the substrates until their films were fractured. The wear volume was measured after 150 cycles and 3,000 cycles using surface profiler. The cytotoxicity test was peformed by the method of the MTT assay. The results were as follows : 1. In the results of the wear volume test, commercially pure titanium and titanium alloy which were coated by diamond-like carbon film or titanium nitride aim had higher resistance against wear than the substrates which were not coated by any films (P<0.05). 2. In the results of the fracture cycle test and the wear volume test, diamond-like carbon film had higher resistance against wear than titanium nitride film (P<0.05). 3. In both coatings of diamond-like carbon aim and titanium nitride film, Ti-6Al-4V alloy had higher resistance against wear than commercially pure titanium (P<0.05) 4. In the results of the cytotoxicity test, diamond-like carbon film and titanium nitride film had little cytotoxicity as like commercially pure titanium or Ti-6Al-4V alloy (P>0.05).

  • PDF

Electrochemical behavior of Calcium Titanate Coated Ti-6Al-4V Substrate in Artificial Saliva

  • Lee, Byoung-Cheon;Balakrishnan, A.;Ko, Myung-Won;Choi, Je-Woo;Park, Joong-Keun;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.22-25
    • /
    • 2008
  • In this study, calcium titanate $(CaTiO_3)$ gel was prepared by mixing calcium nitrate and titanium isopropoxide in 2-methoxy-ethanol. $CaTiO_3$ gel was single-layer coated on Ti-6Al-4V using a sol-gel dip-coating technique. The coating was calcined at $750^{\circ}C$ in air by utilizing a very slow heating rate of $2^{\circ}C/min$. The crystalline phases of the coating were characterized by x-ray diffraction using a slow scan rate of $1^{\circ}/min$. The morphology of the coating was analyzed by scanning electron microscopy. The corrosion behavior of Ti-6Al-4V samples coated with $CaTiO_3$ films were tested in an artificial saliva solution by potentiodynamic polarization and were quantified by the Tafel extrapolation method. The electrochemical parameters showed a considerable increase in the corrosion resistance for the $CaTiO_3$-coated Ti-6Al-4V samples compared to bare substrates.

Study on the Selection of End Mill Shape to Improve Tool Life in End Mill Process of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 가공에서 공구 수명 향상을 위한 엔드밀 형상의 선정에 관한 연구)

  • Kim, Do Hyeog;Jung, Yoon Gyo;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.76-82
    • /
    • 2019
  • This study aims to find the shapes of an end-mill with low cutting temperature during the end-mill process of Ti-6Al-4V alloy. Such ${\alpha}-{\beta}$ titanium alloys are increasingly more used for their high tensile strength and high corrosion resistance. The cutting characteristics of Ti-6Al-4V alloy were studied using an analytical method validated by comparing the estimated cutting resistance with that from experiments. The end-mill shape was analyzed using an experimental method. The end-mill shape with low cutting resistance and low cutting temperature was confirmed by analyzing the signal-to-noise ratios for various conditions. Then, the factors with significance factor of 95% or more were determined in the variance analysis. Finally, an end-mill shape that can ensure a low cutting temperature was proposed.

A Study on the Cutting Characteristics in the Machining of Ti-6Al-4V Alloy using TiAlN Coated Tool (TiAlN 코팅공구를 사용한 Ti-6Al-4V 티타늄합급의 절삭특성에 관한 연구)

  • 이승철;박종남;조규재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.451-456
    • /
    • 2004
  • The Titanium has many superior characteristics Which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coate Tool which treated PVD (Physical Vapor Deposition). Experimental works are also executed to measure cutting force, chip figuration and surface roughness for different cutting conditions. As a result of study. Tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

  • PDF

The Effect of Alkali- and Heat-Treated Titanium Surfaces on Differentiation of Osteoblast (티타니움 표면의 알칼리-열처리가 골모세포의 분화에 미치는 영향)

  • Kang, Choong Hee;Vang, Mong-Sook;Yang, Hong-so;Park, Sang-Won;Lim, Hyun-Pil
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.3
    • /
    • pp.293-306
    • /
    • 2009
  • In this study, the biological response of fetal rat calvarial cells on alkali- and heat-treated titanium was assessed. The results were as follows; Cell proliferation on alkali- and heat-treated surfaces showed significantly higher level than on the titanium-6aluminum-4vanadium (weight percentage: 6 % aluminum, 4 % vanadium, Ti-6Al-4V) surface (p<0.01). In ELISA analysis, concentration of $IL-1{\beta}$ and IL-6 were raised when the cells were grown to day 7. Pre-treatment with herbimycin, a known tyrosine kinase inhibitor, suppressed the production of IL-6 (p<0.01). In comparison to commercially pure titanium (grade II, cp-Ti) and Ti-6Al-4V alloy, alkali- and heat-treated titanium enhanced alkaline phosphatase activity (p<0.001). In RT-PCR analysis, alkaline phosphatase, bone sialoprotein, receptor activated nuclear factor ligand mRNA expression was increased alkali- and heat-treated titanium. Herbimycin and SB203580, p38 MAPK inhibitor, were repressed of $IL-1{\beta}-induced$ IL-6 mRNA expression. These results suggest that alkali- and heat-treated titanium stimulate osteoblasts differentiation and facilitate bone remodeling.

Shear Spinning of Ti-6Al-4V Alloy at Hot Working Temperature (Ti-6Al-4V 합금의 열간 전단 스피닝)

  • Lee, H.S.;Song, Y.B.;Hong, S.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.432-438
    • /
    • 2011
  • A method for estimating the shear spinnability is suggested, and it was applied to sheets of Ti-6Al-4V alloy for estimation of shear spinnability at hot working temperature. The effective working temperature was $850^{\circ}C$ or above. The hot spinning operation was carried out in two steps of shear spinning. The reduction of thickness at the first step was 50% and 45% at the second, and the overall reduction of thickness was 72.4%. The cone spinning process could produce a uniform wall thickness with only a few percent tolerance, proving itself appropriate for making cones of Ti-6Al-4V alloy with uniform wall thickness.

Cell response to a newly developed Ti-10Ta-10Nb alloy and its sputtered nanoscale coating

  • Kim, Young-Min;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.56-61
    • /
    • 2009
  • STATEMENT OF PROBLEM. The success of titanium implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. PURPOSE. The purpose of this study was to evaluate the osteoblast precursor response to titanium-10 tantalum-10 niobium(Ti-Ta-Nb) alloy and its sputtered coating. MATERIAL AND METHODS. Ti-Ta-Nb coatings were sputtered onto the Ti-Ta-Nb disks. Ti6-Al-4V alloy disks were used as controls. An osteoblast precursor cell line, were used to evaluate the cell responses to the 3 groups. Cell attachment was measured using coulter counter and the cell morphology during attachment period was observed using fluorescent microscopy. Cell culture was performed at 4, 8, 12 and 16 days. RESULTS. The sputtered Ti-Ta-Nb coatings consisted of dense nanoscale grains in the range of 30 to 100 nm with alpha-Ti crystal structure. The Ti-Ta-Nb disks and its sputtered nanoscale coatings exhibited greater hydrophilicity and rougher surfaces compared to the Ti-6Al-4V disks. The sputtered nanoscale Ti-Ta-Nb coatings exhibited significantly greater cell attachment compared to Ti-6Al-4V and Ti-Ta-Nb disks. Nanoscale Ti-Ta-Nb coatings exhibited significantly greater ALP specific activity and total protein production compared to the other 2 groups CONCLUSIONS. It was concluded that nanoscale Ti-Ta-Nb coatings enhance cell adhesion. In addition, Ti-Ta-Nb alloy and its nanoscale coatings enhanced osteoblast differentiation, but did not support osteoblast precursor proliferation compared to Ti-6Al-4V. These results indicate that the new developed Ti-Ta-Nb alloy and its nanoscale Ti-Ta-Nb coatings may be useful as an implant material.