DOI QR코드

DOI QR Code

Electrochemical behavior of Calcium Titanate Coated Ti-6Al-4V Substrate in Artificial Saliva

  • Lee, Byoung-Cheon (Department of Materials Engineering, Paichai University) ;
  • Balakrishnan, A. (Department of Materials Engineering, Paichai University) ;
  • Ko, Myung-Won (Department of Materials Engineering, Paichai University) ;
  • Choi, Je-Woo (Department of Materials Engineering, Paichai University) ;
  • Park, Joong-Keun (Department of Materials Science & Engineering, KAIST) ;
  • Kim, Taik-Nam (Department of Materials Engineering, Paichai University)
  • Published : 2008.01.31

Abstract

In this study, calcium titanate $(CaTiO_3)$ gel was prepared by mixing calcium nitrate and titanium isopropoxide in 2-methoxy-ethanol. $CaTiO_3$ gel was single-layer coated on Ti-6Al-4V using a sol-gel dip-coating technique. The coating was calcined at $750^{\circ}C$ in air by utilizing a very slow heating rate of $2^{\circ}C/min$. The crystalline phases of the coating were characterized by x-ray diffraction using a slow scan rate of $1^{\circ}/min$. The morphology of the coating was analyzed by scanning electron microscopy. The corrosion behavior of Ti-6Al-4V samples coated with $CaTiO_3$ films were tested in an artificial saliva solution by potentiodynamic polarization and were quantified by the Tafel extrapolation method. The electrochemical parameters showed a considerable increase in the corrosion resistance for the $CaTiO_3$-coated Ti-6Al-4V samples compared to bare substrates.

Keywords

References

  1. L. L. Hench, J. Am. Ceram. Soc., 74(7), 1485 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  2. D. W. Hutmacher, Biomaterials, 21(24), 2529 (2000) https://doi.org/10.1016/S0142-9612(00)00121-6
  3. M. Niinomi, Biomaterials, 24(16), 2673 (2003) https://doi.org/10.1016/S0142-9612(03)00069-3
  4. M. Long and H. J. Rack, Biomaterials, 19, 1621 (1998) https://doi.org/10.1016/S0142-9612(97)00146-4
  5. D. M. Brunette, P. Tengvall, M. Textor and P. Thomsen, Titanium in medicine, p. 171 Springer-Verlag, Berlin-Heidelberg, New York (2001)
  6. R. W. Schutz and D. E. Thomas, Corrosion of titanium and titanium alloys: In Metals Handbook, vol. 13, 9th ed., p.669, American Society for Metal (ASM) International, Metals Park, Ohio, (1987)
  7. C. Y. Zheng, S. J. Li, X. J. Tao, Y. L. Hao, R. Yang and L. Zhang, Mater. Sci. Eng. C., 27, 824 (2007) https://doi.org/10.1016/j.msec.2006.09.021
  8. J. P. Wiff, V. M. Fuenzalida, J. L. Arias and M. S. Fernandez, Mater. Lett., 61(13), 2739 (2006) https://doi.org/10.1016/j.matlet.2006.06.092
  9. S. Holliday and A. Stanishevsky, Surf. Coat. Tech., 188-189, 741 (2004) https://doi.org/10.1016/j.surfcoat.2004.07.044
  10. V. Raman, S.Tamilselvi, S. Nanjundan and N. Rajendran,Trends Biomater. Artif. Organs, 18(2), 137 (2005)
  11. W. H. Ailor, J. Electrochem. Soc., 120, 50C (1973) https://doi.org/10.1149/1.2403807
  12. L. Krivian, Br. Corros. J., 26(3), 191 (1991) https://doi.org/10.1179/000705991798269143
  13. J. Lausmaa, B. Kasemo and H. Mattsson, Appl. Surf. Sci., 44(2), 133 (1990) https://doi.org/10.1016/0169-4332(90)90100-E
  14. T. Hanawa and M. Ota, Biomaterials, 12(8), 767 (1991) https://doi.org/10.1016/0142-9612(91)90028-9
  15. G. Meachim and D. F. Williams, J. Biomed. Mater. Res., 7(6), 555 (1973) https://doi.org/10.1002/jbm.820070607
  16. R. J. Solar, S. R. Pollack and E. Korostoff, J. Biomed. Mater. Res., 13(2), 217 (1979) https://doi.org/10.1002/jbm.820130206