• 제목/요약/키워드: Ti-6A1-4V

검색결과 377건 처리시간 0.034초

Ti-6Al-4V 변형률 속도 변화에 따른 인장, 압축형 JC 구성방정식 변수의 변화 (Differences on Tension, Compression JC Constitutive Equation Parameter of Strain Rate Effect for Ti-6Al-4V)

  • 우상현;이창수;박이주
    • 한국재료학회지
    • /
    • 제27권1호
    • /
    • pp.19-24
    • /
    • 2017
  • This paper is concerned with a test method that can be used to investigate the parameters of the Johnson-Cook constitutive model. These parameters are essential for accurately analyzing material behavior under impact loading conditions in numerical simulation. Ti-6Al-4V alloy (HCP crytal structure) was used as a specimen for the experiments. In the $10^{-3}-10^3/s$ strain rate range, three types of experimental methods (convention, compression and tension) were employed to compare the differences using MTS-810, SHPB and SHTB. Finite element analysis results when applying these parameters were displayed along with the experiment results.

Ti-6Al-4V 합금의 선삭가공시 칩처리성에 관한 연구 (A Study on the Chip Treatment of Ti-6Al-4V Alloy in Turning processing)

  • 박종남;이승철;조규재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1551-1554
    • /
    • 2005
  • The Titanium has many superior characteristics Which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coate Tool which treated PVD (Physical Vapor Deposition). Experimental works are also executed to measure cutting force, chip figuration and surface roughness for different cutting conditions. As a result of study. Tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

  • PDF

H2O2/HCl 처리한 Ti 임플란트의 생체활성 평가 (Evaluation of Bioactivity of Titanium Implant Treated with H2O2/HCl Solution)

  • 유재선;권오성;이오연;이민호;송기홍
    • 한국재료학회지
    • /
    • 제15권5호
    • /
    • pp.353-360
    • /
    • 2005
  • Surface treatment play an important role in nucleating calcium phosphate deposition on surgical Ti implant. Therefore, the purpose of this study is to examine whether the precipitation of apatite on cp-Ti and Ti alloys are affected by surface modification in HCl and $H_2O_2$ solution. Specimens were then chemically treated with a solution containing 0.1 M HCl and 8.8M $H_2O_2$ at $80^{\circ}C$ for 30 mins, and subsequently heat-treated at $400^{\circ}C$ for 1 hour. All specimens were immersed in the HBSS with pH 7.4 at $36.5^{\circ}C$ for 15 days, and the surface was examined with XRD, SEM, EDX ana XPS. Also, pure Ti, Ti-6Al-4V and Ti-6Al-7Nb alloy specimens with and without surface treatment were implanted in the abdominal connective tissue of mice for 4 weeks. All specimens chemically treated with HCl and $H_2O_2$ solution have the ability to form a apatite layer in the HBSS which has inorganic ion composition similar to human blood plasma. The average thickness of the fibrous capsule surrounding the specimens implanted in the connective tissue was $38.57\;{\mu}m,\;62.27\;{\mu}m\;and\;45.64\;{\mu}m$ in the cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloy specimens with the chemical treatment respectively, and $52.20\;{\mu}m,\;75.62\;{\mu}m\;and\;66.56\;{\mu}m$ in the commercial specimens of cp-Ti, Ti-6Al-4V and Ti-6Al-7Nb without any treatment respectively. The results of this evaluation indicate that the chemically treated cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloys have better bioactivity and biocompatibility compared to the other metals tested.

티타늄 합금(Ti-6Al-4V)의 조직변화에 따른 기계적 특성 평가 (The Evaluation of Mechanical Properties on the Changes of Microstructure for Titanium Alloy (Ti-6Al-4V))

  • 권재도;배용탁;최성종
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.609-616
    • /
    • 2002
  • The characteristics of mechanical behavior are investigated for Ti-6Al-4V alloy. Four kinds of the specimens are prepared under different heat treatments in order to produce different microstructures. In the present investigations, impact, tensile and fatigue crack growth tests are performed for each test specimen. The results obtained through the investigations are compared. Additionally fr actal dimensions of crack pass are obtained using the box counting method. The results are, 1) the microstructures shows as equiaxed, bimodal and Widmanstatten microstructures respectively, 2) the impact energy and elongation are superior fur the bimodal microstructure, and the hardness and tensile strength are superior fur the Widmanstatten microstructure, 3) the fatigue crack growth rate is similar to all microstructures in low ΔK region while that of equiaxed microstructure is the largest, and that of Widmanstatten microstructure is the lowest in high ΔK region respectively, 4) the fractal dimension D of Widmanstatten microstructure shows higher value than that of the equiaxed and bimodal microstructures under 200 magnification view of the SEM micrographs.

대형 압축기 휠의 열간단조 공정설계 (Hot Forging Design for a Large Scale Compressor Wheel)

  • 임정숙;염종택;김현규;박노광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.47-50
    • /
    • 2003
  • Hot-forging Process and die design was made for a large-scale compressor wheel of Ti-6Al-4V alloy with 2-D FE analysis. The design integrated the geometry-controlled approach and dynamic materials modelling(DMM). In order to obtain the processing contour map of Ti-6Al-4V alloy based on DMM, compression tests were carried out in the temperature range of 915$^{\circ}C$ to 1015$^{\circ}C$ and the strain range of 10$\^$-3/s$\^$-1/ to 10s$\^$-1/. In the die design of the compressor wheel using the rigid-plastic FE analysis, forging dimensional accuracy, the capacity of the forging machine and defect-free forging were considered as main design factors. The microstructure of hot forged wheel using the designed die showed a typical alpha-beta structure without forging-defects.

  • PDF

티타늄 합금(Ti-6A1-4V)의 밀링가공에서 L자형 얇은 벽 구조의 가공품질 향상 (Improving Machining Quality of L-Shaped Thin-Walled Structure in Milling Process of Ti-Alloy (Ti-6Al-4V))

  • 김종민;구준영;전차수
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.52-59
    • /
    • 2021
  • Titanium alloy (Ti-alloy) is widely used as a material for core parts of aircraft structures and engines that require both lightweight and heat-resistant properties owing to their high specific stiffness. Most parts used in aircraft have I-, L-, and H-shaped thin-walled structures for weight reduction. It is difficult to machine thin-walled structures owing to vibrations and deformations during machining. In particular, cutting tool damage occurs in the corners of thin-walled structures owing to the rapid increase in cutting force and vibration, and machining quality deteriorates because of deep tool marks on machined surfaces. In this study, milling experiments were performed to derive an effective method for machining a L-shaped thin-walled structure with Ti-alloy (Ti-6Al-4V). Three types of machining experiment were performed. The surface quality, tool wear, cutting force, and vibration were analyzed comprehensively, and an effective machining method in terms of tool life and machining quality was derived.

미세조직적 인자가 밀소둔된 Ti-6Al-4V 합금의 피로 및 피로균열전파 거동에 미치는 영향 (Effect of Microstructural Factors on Fatigue and Fatigue Crack Propagation Behaviors of Mill-Annealed Ti-6Al-4V Alloy)

  • 박상후;김수민;이다은;안수진;김상식
    • 대한금속재료학회지
    • /
    • 제56권12호
    • /
    • pp.845-853
    • /
    • 2018
  • To understand the effect of microstructural factors (i.e., the size of ${\alpha}$ phase, equiaxed vs bimodal structure) on high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors of mill-annealed Ti-6Al-4V (Ti64) alloy, three specimens of EQ (equiaxed)-8 (8 indicates the size of ${\alpha}$ grain), BM (bimodal)-8, and BM-16 were studied. The uniaxial HCF and FCP tests were conducted at an R ratio of 0.1 under sinusoidal fatigue loading. The microstructural influence (i.e., EQ vs BM) was not significant on the tensile properties of mill-annealed Ti64 alloy, and showed an increase in tensile strength and elongation with decreasing gauge thickness from 50 mm to 1.3 mm. The microstructure, on the other hand, affected the resistance to HCF substantially. It was found that the EQ structure in mill-annealed Ti64 has better resistance to HCF than the BM structure, as a result of different crack initiation mechanism. Unlike HCF behavior, the effect of microstructural features on the FCP behavior of mill-annealed Ti64 was not significant. Among the three specimens, BM-16 specimen showed the highest near-threshold ΔK value, probably because it had the greatest slip reversibility with large ${\alpha}$ grains. The effect of microstructural factors on the HCF and FCP behaviors of mill-annealed Ti64 alloy are discussed based on fractographic and micrographic observations.

복합처리(Carburized/CrN Coating)로 표면개질된 Ti-6Al-4V합금의 크리프 특성 (Creep Characteristics of Ti-6Al-4V Alloy Surface Modified by Plasma Carburized/CrN Coating)

  • 박용권;박정웅;위명용
    • 열처리공학회지
    • /
    • 제18권3호
    • /
    • pp.183-189
    • /
    • 2005
  • The effects of duplex-treatment of plasma carburization and CrN coating onto Ti-6Al-4V alloy on its creep properties were investigated by means of a constant stress creep tester. Applying duplex-treatment, specimens having an inner carburized layer of about $150{\mu}m$ in depth and outer CrN layer of about $7.5{\mu}m$ in thickness were prepared. The hardness of duplex-treatment surface was about 1,960 VHN. It also appeared that the duplex-treatment improved the roughness of the surface significantly; $Ra=0.045{\mu}m$ for treated alloy while $Ra=0.321{\mu}m$ for untreated alloy. The steady-state creep behaviors were investigated in a temperature range of $510{\sim}550^{\circ}C$ ($0.42{\sim}0.44T_m$) under an applied stress range of 200~275 MPa. The stress exponent, n, was derived assuming the power law creep behavior. The surface treatment showed a decrease in a value from 9.32 (untreated) to 8.79 (treated). Also the activation energy obtained from an Arrhenius plot increased from 238 to 257 kJ/mol.

(TiB+TiC) 입자강화 Ti기 복합재료의 접촉하중에 따른 내마모 특성 (Effect of Contact Load on Wear Property of (TiB+TiC) Particulates Reinforced Titanium Matrix Composites)

  • 최봉재
    • 한국주조공학회지
    • /
    • 제37권4호
    • /
    • pp.115-122
    • /
    • 2017
  • The aim of this research is to evaluate the wear properties of (TiB+TiC) paticulate reinforced titanium matrix composites (TMCs) by in-situ synthesis. Different particle sizes (1500, $150{\mu}m$) and contents (0.94, 1.88 and 3.76 mass% for Ti, 1.98 and 3.96 mass% for the Ti6Al4V alloy) of boron carbide were added to pure titanium and to a Ti6Al4V alloy matrix during vacuum induction melting to provide 5, 10 and 20 vol.% (TiB+TiC) particulate reinforcement amounts. The wear behavior of the (TiB+TiC) particulate reinforced TMCs is described in detail with regard to the coefficient of friction, the hardness, and the degree of reinforcement fragmentation during sliding wear. The worn surfaces of each sliding wear condition are shown for the three types of wear studied here: transfer layer wear, particle cohesion wear and the development of abrasive areas. The fine reinforcements of TMCs were easily fragmented from the Ti matrix as compared to coarse reinforcements, and fragmented debris accelerated the decrease in the wear resistance.

전자기 연속 주조법을 이용한 의료용 타이타늄 합금 제작에 관한 연구 (Fabrication of Titanium alloy by Electromagnetic Continuous Casting (EMCC) Method for Medical Applications)

  • 최수지;이현재;백수현;현승균;정현도;문병문
    • 한국주조공학회지
    • /
    • 제38권1호
    • /
    • pp.9-15
    • /
    • 2018
  • Electromagnetic continuous casting (EMCC) was used to fabricate Ti-6Al-4V alloys with properties suitable for medical applications. Ti-6Al-4V alloy ingots fabricated by EMCC were subjected to heat treatment, such as residual stress removing (RRS), furnace cooling after solution treatment (ST-FC) and water-cooling after solution treatment (ST-WC), in order to obtain characteristics suitable for the standard. After component analysis, the microstructure and mechanical properties (tensile strength and elongation) were evaluated by ICP, gas analysis, OM, SEM, a Rockwell hardness tester and universal testing machine. The Ti-6Al-4V alloy ingot fabricated by EMCC was fabricated without segregation, and the lamellar structure was observed in the RRS and ST-FC specimens. The ST-WC specimen showed only martensite structure. As a result of evaluating the mechanical properties based on the microstructure results, we found that the water-cooled heat treatment condition after the solution treatment was most suitable for the Ti-6Al-4V ELI standard.