• Title/Summary/Keyword: Thyroid hormone

Search Result 347, Processing Time 0.03 seconds

Associations Between Thyroid Hormone Levels and Urinary Concentrations of Bisphenol A, F, and S in 6-Year-old Children in Korea

  • Jang, Yoonyoung;Choi, Yoon-Jung;Lim, Youn-Hee;Lee, Kyung-Shin;Kim, Bung-Nyun;Shin, Choong Ho;Lee, Young Ah;Kim, Johanna Inhyang;Hong, Yun-Chul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.1
    • /
    • pp.37-45
    • /
    • 2021
  • Objectives: Bisphenol A (BPA) is used in the electrical, mechanical, medical, and food industries. Previous studies have suggested that BPA is an endocrine disruptor. Regulation of BPA has led to increased use of bisphenol F (BPF) and bisphenol S (BPS). However, few studies have investigated the associations of BPF and BPS with thyroid dysfunction in children. Our study investigated the associations of prenatal BPA and early childhood BPA, BPF, and BPS exposure with thyroid function in 6-year-old children. Methods: Prenatal BPA concentrations were measured during the second trimester of pregnancy in an established prospective birth cohort. We measured urinary BPA, BPF, and BPS concentrations and thyroid hormone levels (thyroid-stimulating hormone, total T3, and free T4) in 6-year-old children (n=574). We examined the associations between urinary bisphenol concentrations and percentage change of thyroid hormone concentrations using multivariate linear regression. We also compared thyroid hormone levels by dividing the cohort according to BPA, BPF, and BPS concentrations. Results: The associations between prenatal BPA and total T3 levels were statistically significant in all models, except for girls when using a crude model. The associations between urinary BPA and BPS concentrations and levels of all thyroid hormones were not statistically significant. However, we observed that lower free T4 levels (-1.94%; 95% confidence interval, -3.82 to -0.03) were associated with higher urinary BPF concentrations in girls only. Conclusions: Our findings identified significant associations between prenatal BPA exposure and total T3 levels in all children and between BPF exposure and free T4 levels in girls only.

Thyroid dysfunction in very low birth weight preterm infants

  • Lee, Ji Hoon;Kim, Sung Woo;Jeon, Ga Won;Sin, Jong Beom
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.6
    • /
    • pp.224-229
    • /
    • 2015
  • Purpose: Thyroid dysfunction is common in preterm infants. Congenital hypothyroidism causes neurodevelopmental impairment, which is preventable if properly treated. This study was conducted to describe the characteristics of thyroid dysfunction in very low birth weight infants (VLBWIs), evaluate risk factors of hypothyroidism, and suggest the reassessment of thyroid function with an initially normal thyroid-stimulating hormone (TSH) as part of a newborn screening test. Methods: VLBWIs (January 2010 to December 2012) were divided into two groups according to dysfunction-specific thyroid hormone replacement therapy, and associated factors were evaluated. Results: Of VLBWIs, 246 survivors were enrolled. Only 12.2% (30/246) of enrolled subjects exhibited thyroid dysfunction requiring thyroid hormone replacement. Moreover, only one out of 30 subjects who required thyroid hormone treatment had abnormal thyroid function in the newborn screening test with measured TSH. Most of the subjects in the treatment group (22/30) exhibited delayed TSH elevation. Gestational age, Apgar score, antenatal steroids therapy, respiratory distress syndrome, patent ductus arteriosus, sepsis, intraventricular hemorrhage, postnatal steroids therapy, and duration of mechanical ventilation did not differ between the two groups. Birth weight was smaller and infants with small for gestational age were more frequent in the treatment group. Conclusion: Physicians should not rule out suggested hypothyroidism, even when thyroid function of a newborn screening test is normal. We suggest retesting TSH and free thyroxine in high risk preterm infants with an initially normal TSH level using a newborn screening test.

Effect of Ultramarathon on the Anterior Pituitary and Thyroid Hormones (울트라마라톤이 뇌하수체 전엽 및 갑상선 호르몬에 미치는 영향)

  • Shin, Kyung-A;Kim, Young-Joo
    • The Korean journal of sports medicine
    • /
    • v.36 no.4
    • /
    • pp.214-220
    • /
    • 2018
  • Purpose: The purpose of this research is to study changes in pituitary hormone in anterior lobe and thyroid hormone before, after, and during recovery time in severe 100 km ultramarathon. Methods: Healthy middle-aged runners (age, $52.0{\pm}4.8$ years) participated in the test. Grade exercise test is done, and then blood is taken from those participants before and after completing 100 km ultramarathon at the intervals of 24 hours (1 day), 72 hours (3 days), and 120 hours (5 days) to analyze their luteinizing hormone (LH), follicle-stimulating hormone (FSH), thyroid stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), and free thyroxine (Free T4). Results: For LH, it decreased more significantly at 100 km than pre-race. However, after 1 day result increased more than that of 100 km. At 3 days, it was significantly higher than pre-race and 100 km, recovering at 5 days. In terms of FSH, it decreased at 100 km, 1 day, and 3 days more than pre-race but recovered at 5 days. TSH was higher at 1 day and 5 days compared to pre-race. T3 was only higher at 100 km than pre-race. T4 was higher till 5 days at 100 km than pre-race. Free T4 increased more significantly at 100 km than pre-race. Conclusion: In terms of severe long distance running, LH and FSH which belong to hormone from anterior lobe as well as T3, T4, and Free T4 which belong to thyroid hormone showed their variation within the standard range. However, TSH showed abnormal increase from enhanced concentration of blood after marathon becoming hyper-activation even during the recovery period.

Zebrafish (Danio rerio) Thyroid Hormone Receptor $\alpha$1 Counteracts Retinoic Acid-induced Transcription

  • Rhee, Myubg-Chull;Lee, Woonghee;Chang, Mi-Sook;Lee, Sang-Kyou
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.133-137
    • /
    • 1998
  • The present study aims to characterize a cDNA encoding zebrafish thyroid hormone receptor $\alpha{1}$ $(zTR\alpha{1)}$ in order to investigate its possible role in the early stage of embryonic development. A mobility shift assay showed that $zTR\alpha{1}$ overexpressed in COS7 cells specifically bound to thyroid hormone response element (TRE). In addition, the specific interaction of anti-rat $TR\alpha{1}$ antibodies with $zTR\alpha1$/TRE complexes demonstrated that the cDNA clone encoded zebrafish thyroid hormone receptor $\alpha{1}$. Transient cotransfection assays showed that $zTR\alpha{1}$ repressed the transcription which was induced by retinoic acid (RA), a well-characterized embryonic morphogen. These results suggest that zTRal may be involved in regulating the RA-induced gene transcription during early embryonic development.

  • PDF

The effect of cardiopumonary bypass on the concentrations of thyroid hormone (체외순환이 갑상선호르몬 농도에 미치는 영향에 관한 연구)

  • Kim, Gyu-Man;Jeon, Sang-Hyeop;Kim, Jong-Won
    • Journal of Chest Surgery
    • /
    • v.27 no.7
    • /
    • pp.571-575
    • /
    • 1994
  • The hemodynamic effects of thyroid hormone are well established, and this hormone affects myocardial contractility, heart rate, and myocardial oxygen consumption. But the role of cardiopulmonary bypass on the thyroid function is not yet fully understood. We have studied twelve patients [male and female patients were equal in number] who were performed open heart surgery under cardiopulmonary bypass. The results are followed. 1] The serum level of T3 began to fall after cardiopulmonary bypass and sustained significantly till 24 hours after operation[p<0.05] 2] The concentrations of T4, Free T4, and TSH were slightly decreased after cardiopulmonary bypass but was maintained within normal range. 3] This above findings are similar to the "sick sinus syndrome" that is seen in severely ill patient. 4] We can propose that T3 would be effective in postoperative low cardiac output syndrome. syndrome.

  • PDF

Effect of Retinoic Acid, Thyroid Hormone and Hydrocortisone on Viability and Differentiation in SK-N-SB Neuroblastoma Cell Lines (Neuroblastoma세포의 생존과 분화에 미치는 retinoic acid, thyroid hormone, 및 hydrocortisone의 작용)

  • 이경은;배영숙
    • Biomolecules & Therapeutics
    • /
    • v.8 no.4
    • /
    • pp.285-292
    • /
    • 2000
  • The effects of the members of the same nuclear receptor superfamily (all-trans retinoic acid (RA), thyroid hormone(T3) or hydrocortisone) on proliferation and differentiation in the SK-N-SH neuroblastoma (NB) cell lines were studied. NB cells were treated with RA, T3, or hydrocortisone at concentration of 10$^{-6}$ M or 10$^{-8}$ M for 3 days or 7 days. RA induced concentration- and time-dependent morphologic differentiation(neurite outgrowth and microtubule-associated protein expression) and growth inhibition in NB cells. Treatment of 10$^{-7}$ M T3 for 7 days increased viability and differentiation of NB cells. Treatment of 10$^{-6}$ M hydrocortisone for 7 days increased viability of NB cells. Although these three effectors are members of the same receptor superfamily, the regulation of brain development may be carried out in a different manner.

  • PDF

A Study on the relationship between Shin(腎) with Thyroid (신(腎)과 갑상선(甲狀腺)의 상관성(相關性)에 관(關)한 고찰(考察))

  • Park, Jong-Hyo;Han, Yang-Hee
    • The Journal of Internal Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.305-331
    • /
    • 1997
  • So far we oriental medical doctors have referred to Shin(腎) as endocrine system, especially suprarenal gland, sexual gland and autonomic nervous system, thyroid etc. as well as kidney. But the sight on thyroid is weak and the relationship with Shin(腎) hasn't been suggested clearly. The purpose of this study is to find out the relationship between Shin(腎) with thyroid. The following are the results. 1. Ki Gi(氣機) of Shin(腎) is similar to the fuction of thyroid in that they are the base of human metabolism, influencing all the metabolism of human tissue. 2. Shin Yang(腎陽) and thyroid hormone are almost identical in that they are the base of Yang Gi(陽氣), the former as source of heat energy, the latter as energy hormone. 3. Shin(腎) and thyroid hormone are almost the same in that they activate growth of human body. 4. Ki Gi(氣機) of Shin(腎) such as Ju Gol(主骨), Saeng Su(生髓), Tong uh Noi(通於腦) is similar to the effects of thyroid hormone on bones, central nervous system and hair 5. The symptoms of deficiency of Shin Eum(腎陰虛) are almost identical with those of hyperthyroidism, so the process of Yang Hwa Gi(陽化氣) caused by exuberance of Yang due to deficiency of Shin Eum(腎陰虛陽亢) is similar to excessive metabolism caused by hyperthyroidism. 6. The process of Eum Seong Hyung(陰成形) caused by preponderance of Eum due to deficiency of Shin Yang(腎陽虛陰盛) is similar to the lowering of metabolism caused by hypothyroidism. 7. Deficiency of Shin Eum(腎陰虛) is similar to hyperthyroidism, deficiency of Shin Yang(腎陽虛) to hypothyroidism. But there are major difference in edema and the fuction of intestine. To conclude, Ki Gi(氣機) of Shin is similar to the function of throid in many respects. I hope that there will be further studies on the relationship beteen thyroid malfuction with deficiency of Shin Yang(腎陽虛) or of Shin Eum(腎陰虛) in the future.

  • PDF

Thyroid Hormones Receptor/Reporter Gene Transcription Assay for Food Additives and Contaminants

  • Jeong Sang-Hee;Cho Joon-Hyoung
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.333-338
    • /
    • 2005
  • Many of thyroid hormones disrupting chemicals induce effects via interaction with thyroid hormone and retinoic acid receptors and responsive elements intrinsic in target cells. We studied thyroid hormones disrupting effects of food additives and contaminants including BHA, BHT, ethoxyquin, propionic acid, sorbic acid, benzoic acid, CPM, aflatoxin B1, cadmium chloride, genistein, TCDD, PCBs and TDBE in recombinant HeLa cells containing plasmid construct for thyroxin responsive elements. The limit of response of the recombinant cells to T3 and T4 was $1\times10^{-12}\;M$. BHA. genistein, cadmium and TBDE were interacted with thyroid receptors with dose-responsive pattern. In addition, BHA, BHT, ethoxyquin, propionic acid, benzoic acid, sorbic acid, and TBDE showed synergism while cadmium chloride antagonism for T3-induced activity. This study elucidates that recombinant HeLa cell is sensitive and high-throughput system for the detection of chemicals that induce thyroid hormonal disruption via thyroid hormone receptors and responsive elements. Also this study raised suspect of BHA. BHT, ethoxyquin, propionic acid, benzoic acid, sorbic acid, TBDE, genisteine and cadmium chloride as thyroid hormonal system disruptors.

Low Dose Exposure to Di-2-Ethylhexylphthalate in Juvenile Rats Alters the Expression of Genes Related with Thyroid Hormone Regulation

  • Kim, Minjeong;Jeong, Ji Seong;Kim, Hyunji;Hwang, Seungwoo;Park, Il-Hyun;Lee, Byung-Chul;Yoon, Sung Il;Jee, Sun Ha;Nam, Ki Taek;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.512-519
    • /
    • 2018
  • Phthalates widely used in the manufacture of plastics have deeply penetrated into our everyday lives. Recently, a concern over the toxicity of phthalates on thyroid, has been raised but in most of cases, the doses employed were unrealistically high. To investigate the effects of phthalates on thyroid, we investigated the effects of the repeated oral exposure to low to high doses (0.3, 3, 30 and 150 mg/kg) di-2-ethylhexylphthalate (DEHP) from weaning to maturity for 90 days in juvenile rats on the thyroid. The histological examination revealed that DEHP significantly induced hyperplasia in the thyroid from the doses of 30 mg/kg, which was confirmed with Ki67 staining. In line with this finding, increased mRNA expression of thyrotropin releasing hormone (Trh) was observed in the thyroid of female at 0.3 mg/kg and 150 mg/kg as determined by RNAseq analysis. Moreover, significantly increased expression of parathyroid hormone (Pth) in the female at 0.3 mg/kg, and thyroglobulin (Tg) and thyroid hormone responsive (Thrsp) in the male at 0.3 mg/kg were noted in the blood, of which changes were substantially attenuated at 150 m/kg, alluding the meaningful effects of low dose DEHP on the thyroid hormone regulation. Urinary excretion of mono-2-ethylhexyl-phthalate (MEHP), a major metabolite of DEHP was determined to be 4.10 and 12.26 ppb in male, 6.65 and 324 ppb in female at 0.3 and 30 mg/kg DEHP, respectively, which fell within reported human urine levels. Collectively, these results suggest a potential adverse effects of low dose phthalates on the thyroid.

Enhancement of Parathyroid Hormone in Postmenopausal Women by Chlorella Dietary Supplementation

  • Kim, Dong-Uk;Seong, Hee-Kyung;Hwang, Jung-Min;Jeon, Ae-Ran;Yun, Ji-Young;Kim, Yong-Ho
    • Biomedical Science Letters
    • /
    • v.9 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • Parathyroid hormone has clearly emerged as the most promising new anabolic treatment for osteoporosis by increasing the activation of osteoblast. It is known that chlorella increases both bone mineral density (BMD) and the rate of bone formation. The purpose of the present study was to determine whether the chlorella dietary supplementation could effect the thyroid or parathyroid hormones associated with increased BMD and bone formation. Twenty-two postmenopausal woman were treated for four month with 4 gm of chlorella dietary supplementation per day, then assessed serum calcium,25 OH vitamin D$_3$, thyroid hormone and parathyroid hormone before and after treatment. The mean 25 OH vitamin D$_3$ and parathyroid hormone were shown to marked increases by 193% and 265% respectively, in contrast to decreases by 9.4%, 37%, 33% and 14% in serum calcium, triiodo-thyroxine, free thyroxine and thyroxine stimulation hormone. In conclusion, treatment of postmenopausal women with chlorella dietary supplementation resulted in an increase in BMD and bone formation through enhancement of parathyroid hormone and 25 OH vitamin D$_3$, and a decrease in thyroid hormones.

  • PDF