• Title/Summary/Keyword: Thyristor dual converter

Search Result 16, Processing Time 0.021 seconds

A Study on Three Parallel Operation Control Algorithm of Thyristor Dual Converter System for Urban Railway Substation (도시 철도용 사이리스터 듀얼 컨버터 시스템의 3병렬 운전 제어 기법에 관한 연구)

  • Kim, Sung-An;Han, Sung-Woo;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.459-467
    • /
    • 2017
  • An urban railway power substation consists of three thyristor dual converters. Two converters are connected to up and down trolley line to supply the electric energy or feed the regenerative energy back to the distribution. When the two converters break down, the remaining converter is used in an emergency. One thyristor dual converter system (TDCS) manages the energy of two or three railway stations. If the TDCS fails, the trains stop operating. To solve the problem, this paper proposes the three parallel operation control algorithm of thyristor dual converter system using the emergency converter. The broken TDCS can be replaced by the emergency converter in other TDCS. The effectiveness of this proposed control is verified by simulation.

Control Algorithm of Thyristor Dual Converter Power System for Railway Power Substations (철도 변전설비를 위한 싸이리스터 이중 컨버터 전력 시스템의 제어 기법)

  • Han, Sung-Woo;Lee, Chang-Hee;Kim, Young-Woo;Moon, Dong-Ok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.573-579
    • /
    • 2015
  • A control algorithm of thyristor dual converter power system is proposed in this study for a railway power substation. The thyristor dual converter can use regenerative power without an additional system using control algorithm. An autonomous voltage and mode change method is also proposed to provide uninterrupted power to the railway. A 10 kW reduced model of the thyristor dual converter power system is built and tested to verify the validity of the proposed control algorithm.

A Studies for Sequential Mode Change Control Algorithm of the Parallel Dual Converter of Using Thyristor for Supplying the Urban Railway DC Power (도시철도의 직류전력 공급을 위한 사이리스터를 사용한 병렬 듀얼 컨버터의 순차적 모드 전환 제어 알고리즘에 대한 연구)

  • Han, Sung-Woo;Kim, Sung-An;Cho, Yun-Hyun;Byun, Gi-Sig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.511-519
    • /
    • 2016
  • This paper is proposed control algorithm for the using thyristor of the parallel dual converter for Urban railway power supply in order to return the regenerative power generated by regenerative braking in urban railway train. Conventional control algorithm of Thyristor dual converter for urban railway power supply has voltage variation within a control range of hysteresis band. The purposed control algorithm of the parallel thyristor dual converter is to maintain a constant voltage without voltage variation in accordance with variable load through the Sequential mode change. And the control algorithm need calculating optimum initial firing angle to consider magnitude of the load current slope. For this purpose, Proposed algorithm for sequential conversion mode of the dual converter was verified by applying for the simulation.

Initial Firing Angle Control of Parallel Multi-Pulse Thyristor Dual Converter for Urban Railway Power Substations

  • Kim, Sung-An;Han, Sung-Wo;Cho, Yun-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.674-682
    • /
    • 2017
  • This paper presents an optimal initial firing angle control based on the energy consumption and regenerative energy of a parallel multi-pulse thyristor dual converter for urban railway power substations. To prevent short circuiting the thyristor dual converter, a hysteresis band for maintaining a zero-current discontinuous section (ZCDS) is essential during mode changes. During conversion from the ZCDS to forward or reverse mode, the DC trolley voltage can be stabilized by selecting the optimal initial firing angle without an overshoot and slow response. However, the optimal initial firing angle is different depending on the line impedance of each converter. Therefore, the control algorithm for tracking the optimal initial firing angle is proposed to eliminate the overshoot and slow response of DC trolley voltage. Simulations and experiments show that the proposed algorithm yields the fastest DC voltage control performance in the transient state by tracking the optimal firing angle.

Algorithm Development for Improving Output Characteristics of Thyristor Dual Converter with AC Input Voltage Variation (교류 입력 전압 변동에 따른 사이리스터 듀얼 컨버터의 출력 특성 개선을 위한 알고리즘 개발)

  • Kim, Sung-An;Han, Sung-Woo;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1437-1443
    • /
    • 2017
  • Electric energy is consumed or regenerated according to an operation of electric rail cars in urban railway power substations. A thyristor dual converter system is used to deal with the electric energy. Since the AC input voltage of power substations is $22.9kV{\pm}10%$, the magnitude of the AC voltage fluctuates according to load conditions, so the secondary side voltage of the DDY transformer also fluctuates. In the thyristor dual converter, the response characteristics of the DC output voltage and the DC output current are changed based on an initial firing angle in the cross mode conversion between the forward mode and the reverse mode. Therefore, this paper proposes the initial firing angle tracking algorithm considering fluctuation of the AC input voltage. The effectiveness of the proposed algorithm is verified by a simulation compared with the conventional algorithm.

Parallel Control Algorithm of Thyristor Dual Converter Power System for DC Power Substation of Railway (철도 직류 급전용 싸이리스터 이중 컨버터 전력 시스템의 병렬운전 기법)

  • Kim, Young-Woo;Moon, Dong-Ok;Lee, Chang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A parallel control algorithm of thyristor dual-converter power system for the DC power supply of railway is proposed. The circulating current and current imbalance generated during parallel operation can be limited to control the output voltage of each power system by using the proposed parallel control algorithm. The proposed control algorithm can also eliminate output current sensor to achieve the same output response without additional costs. The validity of the proposed algorithm is verified through simulation and experiment.

Diode-Bridge Type Three Phase Six Pulse Dual Converter (다이오드 브릿지 방식에 의한 3상 6펄스 튜엘 콘버어터에 관한 연구)

  • 김철우;윤병도
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.3
    • /
    • pp.179-187
    • /
    • 1987
  • Dual converter using diode bridge and 6-thyristor is discussed and the characteristics of this converter depending on their switching mode is revealed. The switching modes of converter operation are identified on both ac and dc sides. The circuit has the ability to accept or deliver DC current without change of nominal DC voltage magnitude or polarity and has the capability not only to instantaneously change from motoring to generating and vice versa, but to operate cycloconverter.

  • PDF

Current Control of 12-pulse Dual Converter for High Current Coil Power Supply (대전류 코일 전원 공급장치를 위한 12펄스 듀얼 컨버터의 전류제어)

  • 송승호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.332-338
    • /
    • 2002
  • High current coil power supply for superconductivity coil of tokamak requires fast dynamics performance of di/dt and smooth change over of current direction. To meet the specification high performance DSP-based controller Is designed for 12-pulse thyristor dual converter with interphase transformer(IPT). Not only the total current of Y and $\Delta$ converter units but also the difference for those should be regulated fast and accurately. Proportional and integral controller is designed for current difference control and the controller output is compensated to $\Delta$ converter. The source voltage phase angle detection and gate pulse generation algorithm are implemented in software for higher reliability of current control. The current error Is reduced by selection of appropriate initial gating angle during the transient of change over of current direction between thyristor converters.

Output Control of ITER Vertical Stabilization Converter with Circulating Current Technique (순환전류를 이용한 ITER Vertical Stabilization 컨버터의 출력 제어)

  • Chung, Gyo-Bum;Ji, Jun-Keun;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.379-386
    • /
    • 2009
  • This paper investigates the operation of ITER(International Thermonuclear Experimental Reactor) Vertical Stabilization(VS) converter with circulating current. The VS converter has two subunits in parallel. The subunit is composed two back-to-back 12 pulse thyristor converter in series. The circulating current free technique can not always maintain the closed path for the load current because of a dead time zone of the converter operation at the region of the load current inversion. The complex circulation current technique for the load current inversion with VS converter can achieve the fast response and always maintain the closed path for the load curret. The paper proposes the new circulating current algorithm for the load current inversion of ITER VS converter and proves the performance of the circulating current technique with PSIM simulation study.

A novel PLL control method for robust three-phase thyristor converter under sag and notch conditions

  • Lee, Changhee;Yoo, Hyoyol
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.87-88
    • /
    • 2014
  • The paper presents a novel phase locked loop(PLL) control method for robust three-phase thyristor dual converters under sag, notch, and phase loss conditions. This method is applied to three line to line voltages of grid to derive three phase angle errors from three separated single-phase PLLs. They can substitute for abnormal phase to guarantee the synchronization in the various grid fault conditions. The performance of novel PLL with moving average method is verified through simulations.

  • PDF